These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32422700)

  • 1. Programmable stopbands and supratransmission effects in a stacked Miura-origami metastructure.
    Zhang Q; Fang H; Xu J
    Phys Rev E; 2020 Apr; 101(4-1):042206. PubMed ID: 32422700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of a bistable Miura-origami structure.
    Fang H; Li S; Ji H; Wang KW
    Phys Rev E; 2017 May; 95(5-1):052211. PubMed ID: 28618514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating dynamic models for rigid-foldable origami: unveiling intricate bistable dynamics of stacked-Miura-origami structures as a case study.
    Fang H; Wu H; Liu Z; Zhang Q; Xu J
    Philos Trans A Math Phys Eng Sci; 2024 Oct; 382(2283):20240014. PubMed ID: 39370796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable wave coupling in periodically rotated Miura-ori tubes.
    Tomita S; Tachi T
    Philos Trans A Math Phys Eng Sci; 2024 Oct; 382(2283):20240006. PubMed ID: 39370787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable Self-Locking Origami Mechanical Metamaterials.
    Fang H; Chu SA; Xia Y; Wang KW
    Adv Mater; 2018 Apr; 30(15):e1706311. PubMed ID: 29513374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband Waterborne Multiphase Pentamode Metastructure with Simultaneous Wavefront Manipulation and Energy Absorption Capabilities.
    An Y; Zou H; Zhao A
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of rarefaction waves in origami-based metamaterials.
    Yasuda H; Chong C; Charalampidis EG; Kevrekidis PG; Yang J
    Phys Rev E; 2016 Apr; 93():043004. PubMed ID: 27176382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kirigami-based metastructures with programmable multistability.
    Zhang X; Ma J; Li M; You Z; Wang X; Luo Y; Ma K; Chen Y
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2117649119. PubMed ID: 35254898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model.
    Khomeriki R; Lepri S; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066626. PubMed ID: 15697545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave propagation in tunable lightweight tensegrity metastructure.
    Wang YT; Liu XN; Zhu R; Hu GK
    Sci Rep; 2018 Jul; 8(1):11482. PubMed ID: 30065300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation Dynamics in Origami.
    Liu C; Felton SM
    Phys Rev Lett; 2018 Dec; 121(25):254101. PubMed ID: 30608815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origami-Based Reconfigurable Metamaterials for Tunable Chirality.
    Wang Z; Jing L; Yao K; Yang Y; Zheng B; Soukoulis CM; Chen H; Liu Y
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28481048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability.
    Yasuda H; Yang J
    Phys Rev Lett; 2015 May; 114(18):185502. PubMed ID: 26001009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-Mode Programmable Metamaterial Using Ternary Foldable Origami.
    Le DH; Lim S
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28554-28561. PubMed ID: 31310501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origami mechanical metamaterials based on the Miura-derivative fold patterns.
    Zhou X; Zang S; You Z
    Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160361. PubMed ID: 27493581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation.
    Wu Z; Zheng Y; Wang KW
    Phys Rev E; 2018 Feb; 97(2-1):022209. PubMed ID: 29548145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding at the Microscale: Enabling Multifunctional 3D Origami-Architected Metamaterials.
    Lin Z; Novelino LS; Wei H; Alderete NA; Paulino GH; Espinosa HD; Krishnaswamy S
    Small; 2020 Sep; 16(35):e2002229. PubMed ID: 32715617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering the deformation mechanisms of origami metamaterials by introducing generic degree-four vertices.
    Fang H; Li S; Ji H; Wang KW
    Phys Rev E; 2016 Oct; 94(4-1):043002. PubMed ID: 27841481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-folding origami at any energy scale.
    Pinson MB; Stern M; Carruthers Ferrero A; Witten TA; Chen E; Murugan A
    Nat Commun; 2017 May; 8():15477. PubMed ID: 28516913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collective escape and supratransmission phenomena in a nonlinear oscillators chain.
    Mekontchou Foudjio M; Thomas Ndjomatchoua F; Lawrence Gninzanlong C; Tchawoua C
    Chaos; 2020 Dec; 30(12):123122. PubMed ID: 33380023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.