These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32422726)

  • 1. Scale-to-scale energy transfer rate in compressible two-fluid plasma turbulence.
    Banerjee S; Andrés N
    Phys Rev E; 2020 Apr; 101(4-1):043212. PubMed ID: 32422726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative derivation of exact law for compressible and isothermal magnetohydrodynamics turbulence.
    Andrés N; Sahraoui F
    Phys Rev E; 2017 Nov; 96(5-1):053205. PubMed ID: 29347674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy transfer in compressible magnetohydrodynamic turbulence for isothermal self-gravitating fluids.
    Banerjee S; Kritsuk AG
    Phys Rev E; 2018 Feb; 97(2-1):023107. PubMed ID: 29548083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence.
    Andrés N; Galtier S; Sahraoui F
    Phys Rev E; 2018 Jan; 97(1-1):013204. PubMed ID: 29448457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact relation for correlation functions in compressible isothermal turbulence.
    Galtier S; Banerjee S
    Phys Rev Lett; 2011 Sep; 107(13):134501. PubMed ID: 22026857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact law for compressible pressure-anisotropic magnetohydrodynamic turbulence: Toward linking energy cascade and instabilities.
    Simon P; Sahraoui F
    Phys Rev E; 2022 May; 105(5-2):055111. PubMed ID: 35706285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact relations for energy transfer in simple and active binary fluid turbulence.
    Pan N; Banerjee S
    Phys Rev E; 2022 Aug; 106(2-2):025104. PubMed ID: 36109938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence.
    Banerjee S; Galtier S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013019. PubMed ID: 23410438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Cascade Rate Measured in a Collisionless Space Plasma with MMS Data and Compressible Hall Magnetohydrodynamic Turbulence Theory.
    Andrés N; Sahraoui F; Galtier S; Hadid LZ; Ferrand R; Huang SY
    Phys Rev Lett; 2019 Dec; 123(24):245101. PubMed ID: 31922873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact scaling laws for helical three-dimensional two-fluid turbulent plasmas.
    Andrés N; Galtier S; Sahraoui F
    Phys Rev E; 2016 Dec; 94(6-1):063206. PubMed ID: 28085374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. von Kármán-Howarth equation for three-dimensional two-fluid plasmas.
    Andrés N; Mininni PD; Dmitruk P; Gómez DO
    Phys Rev E; 2016 Jun; 93(6):063202. PubMed ID: 27415372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressible Magnetohydrodynamic Turbulence in the Earth's Magnetosheath: Estimation of the Energy Cascade Rate Using in situ Spacecraft Data.
    Hadid LZ; Sahraoui F; Galtier S; Huang SY
    Phys Rev Lett; 2018 Feb; 120(5):055102. PubMed ID: 29481187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluidization of collisionless plasma turbulence.
    Meyrand R; Kanekar A; Dorland W; Schekochihin AA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1185-1194. PubMed ID: 30610178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cascade of kinetic energy in three-dimensional compressible turbulence.
    Wang J; Yang Y; Shi Y; Xiao Z; He XT; Chen S
    Phys Rev Lett; 2013 May; 110(21):214505. PubMed ID: 23745885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the weak-field regime.
    Blackbourn LA; Tran CV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023012. PubMed ID: 25215825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations.
    Carbone V; Marino R; Sorriso-Valvo L; Noullez A; Bruno R
    Phys Rev Lett; 2009 Aug; 103(6):061102. PubMed ID: 19792547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy cascade and its locality in compressible magnetohydrodynamic turbulence.
    Yang Y; Shi Y; Wan M; Matthaeus WH; Chen S
    Phys Rev E; 2016 Jun; 93(6):061102. PubMed ID: 27415197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy partitioning constraints at kinetic scales in low-
    Gershman DJ; F-Viñas A; Dorelli JC; Goldstein ML; Shuster J; Avanov LA; Boardsen SA; Stawarz JE; Schwartz SJ; Schiff C; Lavraud B; Saito Y; Paterson WR; Giles BL; Pollock CJ; Strangeway RJ; Russell CT; Torbert RB; Moore TE; Burch JL
    Phys Plasmas; 2018; 25(2):. PubMed ID: 30344429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence.
    Wang J; Wan M; Chen S; Xie C; Chen S
    Phys Rev E; 2018 Apr; 97(4-1):043108. PubMed ID: 29758607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proof of the zeroth law of turbulence in one-dimensional compressible magnetohydrodynamics and shock heating.
    David V; Galtier S
    Phys Rev E; 2021 Jun; 103(6-1):063217. PubMed ID: 34271658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.