These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32422736)

  • 1. Reduction-consistent phase-field lattice Boltzmann equation for N immiscible incompressible fluids.
    Zheng L; Zheng S; Zhai Q
    Phys Rev E; 2020 Apr; 101(4-1):043302. PubMed ID: 32422736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphase flows of N immiscible incompressible fluids: Conservative Allen-Cahn equation and lattice Boltzmann equation method.
    Zheng L; Zheng S; Zhai Q
    Phys Rev E; 2020 Jan; 101(1-1):013305. PubMed ID: 32069624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field-theory-based lattice Boltzmann equation method for N immiscible incompressible fluids.
    Zheng L; Zheng S
    Phys Rev E; 2019 Jun; 99(6-1):063310. PubMed ID: 31330677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-field lattice Boltzmann equation for wettable particle fluid dynamics.
    Zheng L; Zheng S; Zhai Q
    Phys Rev E; 2023 Aug; 108(2-2):025304. PubMed ID: 37723683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows.
    Yuan X; Liang H; Chai Z; Shi B
    Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows.
    Liang H; Xu J; Chen J; Wang H; Chai Z; Shi B
    Phys Rev E; 2018 Mar; 97(3-1):033309. PubMed ID: 29776082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.
    Zu YQ; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann method for binary fluids based on mass-conserving quasi-incompressible phase-field theory.
    Yang K; Guo Z
    Phys Rev E; 2016 Apr; 93():043303. PubMed ID: 27176424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved phase-field-based lattice Boltzmann method for thermocapillary flow.
    Yue L; Chai Z; Wang H; Shi B
    Phys Rev E; 2022 Jan; 105(1-2):015314. PubMed ID: 35193195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Color-gradient-based phase-field equation for multiphase flow.
    Haghani R; Erfani H; McClure JE; Flekkøy EG; Berg CF
    Phys Rev E; 2024 Mar; 109(3-2):035301. PubMed ID: 38632731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-field lattice Boltzmann model with singular mobility for quasi-incompressible two-phase flows.
    Bao J; Guo Z
    Phys Rev E; 2024 Feb; 109(2-2):025302. PubMed ID: 38491598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: The reduction of numerical dispersion.
    Hu Y; Li D; Jin L; Niu X; Shu S
    Phys Rev E; 2019 Feb; 99(2-1):023302. PubMed ID: 30934363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color-gradient lattice Boltzmann model for immiscible fluids with density contrast.
    Subhedar A
    Phys Rev E; 2022 Oct; 106(4-2):045308. PubMed ID: 36397459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and numerical study on the well-balanced regularized lattice Boltzmann model for two-phase flow.
    Zhang Q; Jiang M; Zhuo C; Zhong C; Liu S
    Phys Rev E; 2023 Nov; 108(5-2):055309. PubMed ID: 38115487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface tracking characteristics of color-gradient lattice Boltzmann model for immiscible fluids.
    Subhedar A; Reiter A; Selzer M; Varnik F; Nestler B
    Phys Rev E; 2020 Jan; 101(1-1):013313. PubMed ID: 32069649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows.
    Yang Z; Zhong C; Zhuo C
    Phys Rev E; 2019 Apr; 99(4-1):043302. PubMed ID: 31108650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistent and conservative phase-field-based lattice Boltzmann method for incompressible two-phase flows.
    Zhan C; Chai Z; Shi B
    Phys Rev E; 2022 Aug; 106(2-2):025319. PubMed ID: 36109994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation.
    Zu YQ; Li AD; Wei H
    Phys Rev E; 2020 Nov; 102(5-1):053307. PubMed ID: 33327126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann method for interface capturing.
    Liang H; Wang R; Wei Y; Xu J
    Phys Rev E; 2023 Feb; 107(2-2):025302. PubMed ID: 36932607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.