These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32422749)
1. Active suppression of Ostwald ripening: Beyond mean-field theory. Bressloff PC Phys Rev E; 2020 Apr; 101(4-1):042804. PubMed ID: 32422749 [TBL] [Abstract][Full Text] [Related]
2. Asymptotic analysis of particle cluster formation in the presence of anchoring sites. Bressloff PC Eur Phys J E Soft Matter; 2024 May; 47(5):30. PubMed ID: 38720027 [TBL] [Abstract][Full Text] [Related]
3. Suppression of Ostwald ripening in active emulsions. Zwicker D; Hyman AA; Jülicher F Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012317. PubMed ID: 26274171 [TBL] [Abstract][Full Text] [Related]
4. The role of interfacial rheological properties on Ostwald ripening in emulsions. Meinders MB; van Vliet T Adv Colloid Interface Sci; 2004 May; 108-109():119-26. PubMed ID: 15072934 [TBL] [Abstract][Full Text] [Related]
5. Theory of droplet ripening in stiffness gradients. Vidal-Henriquez E; Zwicker D Soft Matter; 2020 Jul; 16(25):5898-5905. PubMed ID: 32525198 [TBL] [Abstract][Full Text] [Related]
6. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil. Trujillo-Cayado LA; Santos J; Calero N; Alfaro-Rodríguez MC; Muñoz J J Sci Food Agric; 2020 Mar; 100(4):1671-1677. PubMed ID: 31802496 [TBL] [Abstract][Full Text] [Related]
8. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition. Jang Y; Park J; Song HY; Choi SJ J Food Sci; 2019 Mar; 84(3):440-447. PubMed ID: 30714618 [TBL] [Abstract][Full Text] [Related]
9. The life of an anise-flavored alcoholic beverage: does its stability cloud or confirm theory? Scholten E; Linden Ev; This H Langmuir; 2008 Mar; 24(5):1701-6. PubMed ID: 18215078 [TBL] [Abstract][Full Text] [Related]
10. Quantification of Ostwald Ripening in Emulsions via Coarse-Grained Simulations. Khedr A; Striolo A J Chem Theory Comput; 2019 Sep; 15(9):5058-5068. PubMed ID: 31411875 [TBL] [Abstract][Full Text] [Related]
11. Control of Ostwald ripening by using surfactants with high surface modulus. Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389 [TBL] [Abstract][Full Text] [Related]
12. RNA transcription modulates phase transition-driven nuclear body assembly. Berry J; Weber SC; Vaidya N; Haataja M; Brangwynne CP Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5237-45. PubMed ID: 26351690 [TBL] [Abstract][Full Text] [Related]
13. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
14. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms. Koroleva M; Nagovitsina T; Yurtov E Phys Chem Chem Phys; 2018 Apr; 20(15):10369-10377. PubMed ID: 29611566 [TBL] [Abstract][Full Text] [Related]
15. Phase field crystal simulations of the kinetics of Ostwald ripening in two dimensions. Moats KA; Asadi E; Laradji M Phys Rev E; 2019 Jan; 99(1-1):012803. PubMed ID: 30780278 [TBL] [Abstract][Full Text] [Related]
16. Droplet formation and growth inside a polymer network: A molecular dynamics simulation study. Jung J; Jang E; Shoaib MA; Jo K; Kim JS J Chem Phys; 2016 Apr; 144(13):134502. PubMed ID: 27059575 [TBL] [Abstract][Full Text] [Related]
18. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters. Henry JV; Fryer PJ; Frith WJ; Norton IT J Colloid Interface Sci; 2009 Oct; 338(1):201-6. PubMed ID: 19589533 [TBL] [Abstract][Full Text] [Related]
19. Materials: solidification and ostwald ripening of near-monotectic zinc-lead alloys. Kneissl A; Fischmeister H Science; 1984 Jul; 225(4658):198-200. PubMed ID: 17837941 [TBL] [Abstract][Full Text] [Related]
20. Active coacervate droplets are protocells that grow and resist Ostwald ripening. Nakashima KK; van Haren MHI; André AAM; Robu I; Spruijt E Nat Commun; 2021 Jun; 12(1):3819. PubMed ID: 34155210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]