These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 32422752)
1. Investigation of supersonic heat-conductivity hyperbolic waves in radiative ablation flows. Varillon G; Clarisse JM; Couairon A Phys Rev E; 2020 Apr; 101(4-1):043215. PubMed ID: 32422752 [TBL] [Abstract][Full Text] [Related]
2. Linear perturbation amplification in self-similar ablation flows of inertial confinement fusion. Abéguilé F; Boudesocque-Dubois C; Clarisse JM; Gauthier S; Saillard Y Phys Rev Lett; 2006 Jul; 97(3):035002. PubMed ID: 16907507 [TBL] [Abstract][Full Text] [Related]
3. Test of thermal transport models through dynamic overpressure stabilization of ablation-front perturbation growth in laser-driven CH foils. Gotchev OV; Goncharov VN; Knauer JP; Boehly TR; Collins TJ; Epstein R; Jaanimagi PA; Meyerhofer DD Phys Rev Lett; 2006 Mar; 96(11):115005. PubMed ID: 16605835 [TBL] [Abstract][Full Text] [Related]
4. Test of a new heat-flow equation for dense-fluid shock waves. Holian BL; Mareschal M; Ravelo R J Chem Phys; 2010 Sep; 133(11):114502. PubMed ID: 20866140 [TBL] [Abstract][Full Text] [Related]
5. Heat-flow equation motivated by the ideal-gas shock wave. Holian BL; Mareschal M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026707. PubMed ID: 20866940 [TBL] [Abstract][Full Text] [Related]
6. Burnett-Cattaneo continuum theory for shock waves. Holian BL; Mareschal M; Ravelo R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026703. PubMed ID: 21405926 [TBL] [Abstract][Full Text] [Related]
7. Microphysics of shock-grain interaction for inertial confinement fusion ablators in a fluid approach. Li GJ; Davidovits S Phys Rev E; 2024 Sep; 110(3-2):035206. PubMed ID: 39425435 [TBL] [Abstract][Full Text] [Related]
8. Steady dynamics of exothermic chemical wave fronts in van der Waals fluids. Dumazer G; Antoine C; Lemarchand A; Nowakowski B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066309. PubMed ID: 20365269 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear Rayleigh wave propagation in a layered half-space in dual-phase-lag. Youssef AA; Amein NK; Abdelrahman NS; Abou-Dina MS; Ghaleb AF Sci Rep; 2023 Feb; 13(1):2187. PubMed ID: 36750710 [TBL] [Abstract][Full Text] [Related]
10. Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid. Backus G; Rieutord M Phys Rev E; 2017 May; 95(5-1):053116. PubMed ID: 28618529 [TBL] [Abstract][Full Text] [Related]
11. Microscopic simulations of supersonic and subsonic exothermic chemical wave fronts and transition to detonation. Lemarchand A; Nowakowski B; Dumazer G; Antoine C J Chem Phys; 2011 Jan; 134(3):034121. PubMed ID: 21261344 [TBL] [Abstract][Full Text] [Related]
12. Longitudinal nonlinear wave propagation through soft tissue. Valdez M; Balachandran B J Mech Behav Biomed Mater; 2013 Apr; 20():192-208. PubMed ID: 23510921 [TBL] [Abstract][Full Text] [Related]
13. Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction. López Molina JA; Rivera MJ; Trujillo M; Berjano EJ Med Phys; 2009 Apr; 36(4):1112-9. PubMed ID: 19472616 [TBL] [Abstract][Full Text] [Related]
14. Modified Chapman-Enskog moment approach to diffusive phonon heat transport. Banach Z; Larecki W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061137. PubMed ID: 19256832 [TBL] [Abstract][Full Text] [Related]
15. Linear and nonlinear propagation of higher order modes in hard-walled circular ducts containing a real gas. Scheichl S J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1806-27. PubMed ID: 15898627 [TBL] [Abstract][Full Text] [Related]
16. Non-equilibrium molecular dynamics simulations of the transient Ludwig-Soret effect in a binary Lennard-Jones/spline mixture. Hafskjold B Eur Phys J E Soft Matter; 2017 Jan; 40(1):4. PubMed ID: 28091930 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of pressure perturbations in ablation due to kinetic magnetized transport effects under direct-drive inertial confinement fusion relevant conditions. Hill DW; Kingham RJ Phys Rev E; 2018 Aug; 98(2-1):021201. PubMed ID: 30253597 [TBL] [Abstract][Full Text] [Related]
18. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. Hu SX; Collins LA; Boehly TR; Kress JD; Goncharov VN; Skupsky S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043105. PubMed ID: 24827353 [TBL] [Abstract][Full Text] [Related]
19. Solitary waves and supersonic reaction front in metastable solids. Viljoen HJ; Lauderback LL; Sornette D Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026609. PubMed ID: 11863680 [TBL] [Abstract][Full Text] [Related]
20. Nonstationary heat conduction in one-dimensional models with substrate potential. Gendelman OV; Shvartsman R; Madar B; Savin AV Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011105. PubMed ID: 22400510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]