These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 32422778)
1. Energy current correlation in solvable long-range interacting systems. Tamaki S; Saito K Phys Rev E; 2020 Apr; 101(4-1):042118. PubMed ID: 32422778 [TBL] [Abstract][Full Text] [Related]
2. Heat Transport via Low-Dimensional Systems with Broken Time-Reversal Symmetry. Tamaki S; Sasada M; Saito K Phys Rev Lett; 2017 Sep; 119(11):110602. PubMed ID: 28949200 [TBL] [Abstract][Full Text] [Related]
3. Momentum conserving model with anomalous thermal conductivity in low dimensional systems. Basile G; Bernardin C; Olla S Phys Rev Lett; 2006 May; 96(20):204303. PubMed ID: 16803175 [TBL] [Abstract][Full Text] [Related]
4. Heat conduction in two-dimensional momentum-conserving and -nonconserving gases. Luo R Phys Rev E; 2020 Nov; 102(5-1):052104. PubMed ID: 33327068 [TBL] [Abstract][Full Text] [Related]
5. Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion. Boyer D; Romo-Cruz JC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042136. PubMed ID: 25375467 [TBL] [Abstract][Full Text] [Related]
6. Universality of anomalous one-dimensional heat conductivity. Lepri S; Livi R; Politi A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):067102. PubMed ID: 14754354 [TBL] [Abstract][Full Text] [Related]
7. Anomalous energy diffusion in two-dimensional nonlinear lattices. Wang J; Liu TX; Luo XZ; Xu XL; Li N Phys Rev E; 2020 Jan; 101(1-1):012126. PubMed ID: 32069594 [TBL] [Abstract][Full Text] [Related]
8. Crossover from ballistic to normal heat transport in the ϕ^{4} lattice: If nonconservation of momentum is the reason, what is the mechanism? Xiong D; Saadatmand D; Dmitriev SV Phys Rev E; 2017 Oct; 96(4-1):042109. PubMed ID: 29347584 [TBL] [Abstract][Full Text] [Related]
9. Heat conduction and energy diffusion in momentum-conserving one-dimensional full-lattice ding-a-ling model. Gao Z; Li N; Li B Phys Rev E; 2016 Feb; 93(2):022102. PubMed ID: 26986283 [TBL] [Abstract][Full Text] [Related]
10. Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature. Hernández-Santana S; Gogolin C; Cirac JI; Acín A Phys Rev Lett; 2017 Sep; 119(11):110601. PubMed ID: 28949238 [TBL] [Abstract][Full Text] [Related]
11. Thermal transport in the Fermi-Pasta-Ulam model with long-range interactions. Bagchi D Phys Rev E; 2017 Mar; 95(3-1):032102. PubMed ID: 28415308 [TBL] [Abstract][Full Text] [Related]
12. Heat conduction in a three-dimensional momentum-conserving anharmonic lattice. Wang L; He D; Hu B Phys Rev Lett; 2010 Oct; 105(16):160601. PubMed ID: 21230957 [TBL] [Abstract][Full Text] [Related]
14. Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs. Iubini S; Di Cintio P; Lepri S; Livi R; Casetti L Phys Rev E; 2018 Mar; 97(3-1):032102. PubMed ID: 29776067 [TBL] [Abstract][Full Text] [Related]
15. More current with less particles due to power-law hopping. Saha M; Purkayastha A; Maiti SK J Phys Condens Matter; 2020 Jan; 32(2):025303. PubMed ID: 31519006 [TBL] [Abstract][Full Text] [Related]
16. Energy and momentum diffusion in one-dimensional periodic and asymmetric nonlinear lattices with momentum conservation. Liao W; Li N Phys Rev E; 2019 Jun; 99(6-1):062125. PubMed ID: 31330609 [TBL] [Abstract][Full Text] [Related]
17. Arrow-arrow correlations for the six-vertex model. Falco P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):030103. PubMed ID: 24125201 [TBL] [Abstract][Full Text] [Related]
18. Energy Current Cumulants in One-Dimensional Systems in Equilibrium. Dhar A; Saito K; Roy A Phys Rev Lett; 2018 Jun; 120(22):220603. PubMed ID: 29906157 [TBL] [Abstract][Full Text] [Related]
19. Effect of suddenly turning on interactions in the Luttinger model. Cazalilla MA Phys Rev Lett; 2006 Oct; 97(15):156403. PubMed ID: 17155348 [TBL] [Abstract][Full Text] [Related]
20. dc electric field effect on the anomalous exponent of the hopping conduction in the one-dimensional disorder model. Egami T; Suzuki K; Watanabe K Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052123. PubMed ID: 24329230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]