These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32422780)

  • 1. Solving fermion problems without solving the sign problem: Symmetry-breaking wave functions from similarity-transformed propagators for solving two-dimensional quantum dots.
    Chin SA
    Phys Rev E; 2020 Apr; 101(4-1):043304. PubMed ID: 32422780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-order path-integral Monte Carlo methods for solving quantum dot problems.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031301. PubMed ID: 25871047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrapolated high-order propagators for path integral Monte Carlo simulations.
    Zillich RE; Mayrhofer JM; Chin SA
    J Chem Phys; 2010 Jan; 132(4):044103. PubMed ID: 20113015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Path integral ground state with a fourth-order propagator: application to condensed helium.
    Cuervo JE; Roy PN; Boninsegni M
    J Chem Phys; 2005 Mar; 122(11):114504. PubMed ID: 15836226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry breaking and quantum correlations in finite systems: studies of quantum dots and ultracold Bose gases and related nuclear and chemical methods.
    Yannouleas C; Landman U
    Rep Prog Phys; 2007 Dec; 70(12):. PubMed ID: 34996294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infinite variance in fermion quantum Monte Carlo calculations.
    Shi H; Zhang S
    Phys Rev E; 2016 Mar; 93(3):033303. PubMed ID: 27078480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple proof that there is no sign problem in path integral Monte Carlo simulations of fermions in one dimension.
    Chin SA
    Phys Rev E; 2024 Jun; 109(6-2):065312. PubMed ID: 39020891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact ground state Monte Carlo method for Bosons without importance sampling.
    Rossi M; Nava M; Reatto L; Galli DE
    J Chem Phys; 2009 Oct; 131(15):154108. PubMed ID: 20568848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum statistical calculations and symplectic corrector algorithms.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046118. PubMed ID: 15169080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No sign problem in one-dimensional path integral Monte Carlo simulation of fermions: A topological proof.
    Chin SA
    Phys Rev E; 2023 Mar; 107(3-2):035305. PubMed ID: 37073069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path integral molecular dynamics for fermions: Alleviating the sign problem with the Bogoliubov inequality.
    Hirshberg B; Invernizzi M; Parrinello M
    J Chem Phys; 2020 May; 152(17):171102. PubMed ID: 32384858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations.
    Wei ZC; Wu C; Li Y; Zhang S; Xiang T
    Phys Rev Lett; 2016 Jun; 116(25):250601. PubMed ID: 27391709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuating the fermion sign problem in path integral Monte Carlo simulations using the Bogoliubov inequality and thermodynamic integration.
    Dornheim T; Invernizzi M; Vorberger J; Hirshberg B
    J Chem Phys; 2020 Dec; 153(23):234104. PubMed ID: 33353338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomy of path integral Monte Carlo: Algebraic derivation of the harmonic oscillator's universal discrete imaginary-time propagator and its sequential optimization.
    Chin SA
    J Chem Phys; 2023 Oct; 159(13):. PubMed ID: 37795786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter.
    Dornheim T
    Phys Rev E; 2019 Aug; 100(2-1):023307. PubMed ID: 31574603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited state calculations using phaseless auxiliary-field quantum Monte Carlo: Potential energy curves of low-lying C(2) singlet states.
    Purwanto W; Zhang S; Krakauer H
    J Chem Phys; 2009 Mar; 130(9):094107. PubMed ID: 19275396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion Monte Carlo study on temporal evolution of entropy and free energy in nonequilibrium processes.
    Tanaka S
    J Chem Phys; 2016 Mar; 144(9):094103. PubMed ID: 26957153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sign problem and population dynamics in the full configuration interaction quantum Monte Carlo method.
    Spencer JS; Blunt NS; Foulkes WM
    J Chem Phys; 2012 Feb; 136(5):054110. PubMed ID: 22320728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing Essential Symmetry Breaking in Auxiliary-Field Quantum Monte Carlo: Application to the Spin Gaps of the C
    Lee J; Malone FD; Morales MA
    J Chem Theory Comput; 2020 May; 16(5):3019-3027. PubMed ID: 32283932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.