BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32422860)

  • 1. Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection.
    Kim S; Mun C; Choi DG; Jung HS; Kim DH; Kim SH; Park SG
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32422860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ag Nanoparticles@Au Nanograting Array as a 3D Flexible and Effective Surface-Enhanced Raman Scattering Substrate.
    Zhang X; Li M; Meng G; Huang Z; Zhu S; Chen B
    Anal Chem; 2024 Apr; 96(16):6112-6121. PubMed ID: 38554137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective filling of nanowells in nanowell arrays fabricated using polystyrene nanosphere lithography with cytochrome P450 enzymes.
    Wollenberg LA; Jett JE; Wu Y; Flora DR; Wu N; Tracy TS; Gannett PM
    Nanotechnology; 2012 Sep; 23(38):385101. PubMed ID: 22947619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps.
    Ding T; Herrmann LO; de Nijs B; Benz F; Baumberg JJ
    Small; 2015 May; 11(18):2139-43. PubMed ID: 25505000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection.
    Liu Y; Chui KK; Fang Y; Wen S; Zhuo X; Wang J
    ACS Nano; 2024 Apr; 18(17):11234-11244. PubMed ID: 38630523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon mediated SERS and photocatalysis enhancement in Au nanoparticle decorated 2D-TiSe
    Sahoo UP; Sahu BK; Sahoo S; Das B; Sahoo PK
    Nanotechnology; 2023 Dec; 35(10):. PubMed ID: 38064734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-Nanogap-Induced Strong Electromagnetic Enhancement in Au/AgAu Monolayer as a Stable and Uniform SERS Substrate for Ultrasensitive Detection.
    Zhao YX; Liang X; Chen YL; Chen YT; Ma L; Ding SJ; Chen XB; Wang QQ
    Anal Chem; 2024 May; 96(21):8416-8423. PubMed ID: 38755966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Design and Optimization of Plasmonic Crystals for Surface Enhanced Raman Spectroscopy Using the Finite Difference Time Domain Method.
    Bigness A; Montgomery J
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29701635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Multi-Layered Built-in Hotspots Nanogaps for Effectively Activating Analytes.
    Jiang L; Wang X; Zhou J; Fu Q; Lv B; Sun Y; Song L; Huang Y
    Adv Sci (Weinh); 2024 Feb; 11(7):e2306125. PubMed ID: 38044318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Plasmonic Platform To Investigate the Correlation between Far-Field Optical Response and SERS Signal of Analytes.
    Nguyen M; Kherbouche I; Braik M; Belkhir A; Boubekeur-Lecaque L; Aubard J; Mangeney C; Felidj N
    ACS Omega; 2019 Jan; 4(1):1144-1150. PubMed ID: 31459390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Phase Catassembly of 10 nm Au Nanoparticles for Sensitive and Stable Surface-Enhanced Raman Scattering Detection.
    Xie T; Li P; Wang J; Dong R; Yang L
    Anal Chem; 2023 Oct; 95(41):15293-15301. PubMed ID: 37800860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D TiS
    Ge Y; Yang Y; Zhu Y; Yuan M; Sun L; Jiang D; Liu X; Zhang Q; Zhang J; Wang Y
    Small; 2024 Mar; 20(12):e2302410. PubMed ID: 37635113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced control over size, areal density, and shape of substrate-supported Au and Ag nanoparticles by solid-state dewetting and alloying.
    Yadav MJ; Aravindan S; Rao PV
    Nanotechnology; 2024 Mar; 35(23):. PubMed ID: 38417171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible 3D Plasmonic Web Enables Remote Surface Enhanced Raman Spectroscopy.
    Rodríguez-Sevilla E; Álvarez-Martínez JU; Castro-Beltrán R; Morales-Narváez E
    Adv Sci (Weinh); 2024 Jun; 11(23):e2402192. PubMed ID: 38582528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tip-based Lithography with a Sacrificial Layer.
    Jo JS; Lee J; Choi C; Jang JW
    Small; 2024 May; 20(19):e2309484. PubMed ID: 38287738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual Raman Enhancement Effect of Ultrathin Copper Sulfide.
    Kim G; Jeong DW; Lee G; Lee S; Ma KY; Hwang H; Jang S; Hong J; Pak S; Cha S; Cho D; Kim S; Lim J; Lee YW; Shin HS; Jang AR; Lee JO
    Small; 2024 Mar; 20(9):e2306819. PubMed ID: 38152985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Molecular Interaction of 3D Plasmonic Nanoporous Gold Alloys by Electronic Modulation for Sensitive Molecular Detection.
    La JA; Lee H; Kim D; Ko H; Kang T
    Nano Lett; 2024 Jun; 24(23):7025-7032. PubMed ID: 38832667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuneable Plasmonic Resonances Of A Dynamic Thin Film Of Ultrasmall Nanocrystals Modified In the Anti-Galvanic Reduction Process.
    Kołodziej G; Szostak S; Tomczyk E; Wójcik M
    Chemistry; 2023 Dec; 29(71):e202301843. PubMed ID: 37642228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and Low-Cost Fabrication of SiO
    Vidal A; Molina-Prados S; Cros A; Garro N; Pérez-Martínez M; Álvaro R; Mata G; Megías D; Postigo PA
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoarchitectonics of a Au nanoprism array on WO
    Chen X; Li P; Tong H; Kako T; Ye J
    Sci Technol Adv Mater; 2011 Aug; 12(4):044604. PubMed ID: 27877412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.