These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32422929)

  • 1. Effects of Structure and Constituent of Prussian Blue Analogs on Their Application in Oxygen Evolution Reaction.
    Zhao D; Lu Y; Ma D
    Molecules; 2020 May; 25(10):. PubMed ID: 32422929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Design and Engineering of Nanomaterials Derived from Prussian Blue and Its Analogs for Electrochemical Water Splitting.
    Xuan C; Zhang J; Wang J; Wang D
    Chem Asian J; 2020 Apr; 15(7):958-972. PubMed ID: 32048454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prussian blue analog-derived nickel iron phosphide-reduced graphene oxide hybrid as an efficient catalyst for overall water electrolysis.
    Chang J; Hu Z; Wu D; Xu F; Chen C; Jiang K; Gao Z
    J Colloid Interface Sci; 2023 May; 638():801-812. PubMed ID: 36791478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrochlores for Advanced Oxygen Electrocatalysis.
    Gayen P; Saha S; Ramani V
    Acc Chem Res; 2022 Aug; 55(16):2191-2200. PubMed ID: 35878953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-oxidation-induced lattice disordering in a Prussian blue analog for ultrastable oxygen evolution reaction performance.
    Kang L; Li J; Wang Y; Gao W; Hao P; Lei F; Xie J; Tang B
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):257-265. PubMed ID: 36242885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma-Induced Oxygen Vacancies in N-Doped Hollow NiCoPBA Nanocages Derived from Prussian Blue Analogue for Efficient OER in Alkaline Media.
    Le HT; Lee JE; Yun SY; Kwon O; Park JK; Jeong YK
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction.
    Yao B; He Y; Wang S; Sun H; Liu X
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Transformation of Prussian-Blue Analogue-Derived Bimetallic Carbide Nanocubes by Water Oxidation: Applications for Energy Storage and Conversion.
    He B; Kuang P; Li X; Chen H; Yu J; Fan K
    Chemistry; 2020 Mar; 26(18):4052-4062. PubMed ID: 31437320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlocked graphene-Prussian blue hybrid composites enable multifunctional electrochemical applications.
    Zhang M; Hou C; Halder A; Ulstrup J; Chi Q
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):570-577. PubMed ID: 26916337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activation of inert NiFe Prussian Blue analogues to boost oxygen evolution reaction activity.
    Zhang C; Chen J; Zhang J; Luo Y; Chen Y; Xue Y; Yan Y; Jiao Y; Wang G; Wang R
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):967-977. PubMed ID: 34598033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust FeCoP nanoparticles grown on a rGO-coated Ni foam as an efficient oxygen evolution catalyst for excellent alkaline and seawater electrolysis.
    Zheng Y; Yu D; Xu W; Zhang K; Ma K; Guo X; Lou Y; Hu M
    Dalton Trans; 2023 Mar; 52(11):3493-3500. PubMed ID: 36846870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Design Strategy of Catalysts for Water Electrolysis.
    Zhou B; Gao R; Zou JJ; Yang H
    Small; 2022 Jul; 18(27):e2202336. PubMed ID: 35665595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting the activity of Prussian-blue analogue as efficient electrocatalyst for water and urea oxidation.
    Feng Y; Wang X; Dong P; Li J; Feng L; Huang J; Cao L; Feng L; Kajiyoshi K; Wang C
    Sci Rep; 2019 Nov; 9(1):15965. PubMed ID: 31685920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction.
    Gorlin Y; Lassalle-Kaiser B; Benck JD; Gul S; Webb SM; Yachandra VK; Yano J; Jaramillo TF
    J Am Chem Soc; 2013 Jun; 135(23):8525-34. PubMed ID: 23758050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction.
    Du J; Li F; Sun L
    Chem Soc Rev; 2021 Mar; 50(4):2663-2695. PubMed ID: 33400745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.
    Wang VC
    Phys Chem Chem Phys; 2016 Aug; 18(32):22364-72. PubMed ID: 27460039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic Water Oxidation by MnO
    Melder J; Kwong WL; Shevela D; Messinger J; Kurz P
    ChemSusChem; 2017 Nov; 10(22):4491-4502. PubMed ID: 28869720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives.
    Liu T; Chen C; Pu Z; Huang Q; Zhang X; Al-Enizi AM; Nafady A; Huang S; Chen D; Mu S
    Small; 2024 Nov; 20(48):e2405399. PubMed ID: 39183523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ construction of 3D hetero-structured sulfur-doped nanoflower-like FeNi LDH decorated with NiCo Prussian blue analogue cubes as efficient electrocatalysts for boosting oxygen evolution reaction.
    Zhang L; Ma YT; Duan JJ; Yao YQ; Feng JJ; Wang AJ
    J Colloid Interface Sci; 2022 Apr; 611():205-214. PubMed ID: 34952273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.