These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 32422955)
1. Differential Response of Tomato Plants to the Application of Three Morán-Diez ME; Tranque E; Bettiol W; Monte E; Hermosa R Plants (Basel); 2020 May; 9(5):. PubMed ID: 32422955 [No Abstract] [Full Text] [Related]
2. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Zhao Y; Thilmony R; Bender CL; Schaller A; He SY; Howe GA Plant J; 2003 Nov; 36(4):485-99. PubMed ID: 14617079 [TBL] [Abstract][Full Text] [Related]
3. Induced Resistance Against Western Flower Thrips by the Chen G; Escobar-Bravo R; Kim HK; Leiss KA; Klinkhamer PGL Front Plant Sci; 2018; 9():1417. PubMed ID: 30344528 [TBL] [Abstract][Full Text] [Related]
4. Priming for enhanced defence responses by specific inhibition of the Arabidopsis response to coronatine. Tsai CH; Singh P; Chen CW; Thomas J; Weber J; Mauch-Mani B; Zimmerli L Plant J; 2011 Feb; 65(3):469-79. PubMed ID: 21265899 [TBL] [Abstract][Full Text] [Related]
5. The phytotoxin coronatine from Pseudomonas syringae pv. tomato DC3000 functions as a virulence factor and influences defence pathways in edible brassicas. Elizabeth SV; Bender CL Mol Plant Pathol; 2007 Jan; 8(1):83-92. PubMed ID: 20507480 [TBL] [Abstract][Full Text] [Related]
6. A prominent role for RCAR3-mediated ABA signaling in response to Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis. Lim CW; Luan S; Lee SC Plant Cell Physiol; 2014 Oct; 55(10):1691-703. PubMed ID: 25063782 [TBL] [Abstract][Full Text] [Related]
7. Identifying beneficial qualities of Trichoderma parareesei for plants. Rubio MB; Quijada NM; Pérez E; Domínguez S; Monte E; Hermosa R Appl Environ Microbiol; 2014 Mar; 80(6):1864-73. PubMed ID: 24413597 [TBL] [Abstract][Full Text] [Related]
8. Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: the role of ethylene in Pseudomonas syringae infected tobacco. Huang J; Schmelz EA; Alborn H; Engelberth J; Tumlinson JH J Chem Ecol; 2005 Mar; 31(3):439-59. PubMed ID: 15898494 [TBL] [Abstract][Full Text] [Related]
9. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Yoshioka Y; Ichikawa H; Naznin HA; Kogure A; Hyakumachi M Pest Manag Sci; 2012 Jan; 68(1):60-6. PubMed ID: 21674754 [TBL] [Abstract][Full Text] [Related]
10. Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Huang J; Cardoza YJ; Schmelz EA; Raina R; Engelberth J; Tumlinson JH Planta; 2003 Sep; 217(5):767-75. PubMed ID: 12712338 [TBL] [Abstract][Full Text] [Related]
11. Response of tobacco to the Pseudomonas syringae pv. Tomato DC3000 is mainly dependent on salicylic acid signaling pathway. Liu Y; Wang L; Cai G; Jiang S; Sun L; Li D FEMS Microbiol Lett; 2013 Jul; 344(1):77-85. PubMed ID: 23581479 [TBL] [Abstract][Full Text] [Related]
12. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Leonetti P; Zonno MC; Molinari S; Altomare C Plant Cell Rep; 2017 Apr; 36(4):621-631. PubMed ID: 28239746 [TBL] [Abstract][Full Text] [Related]
13. Deciphering the defense response in tomato against Shanmugaraj C; Kamil D; Parimalan R; Singh PK; Shashank PR; Iquebal MA; Hussain Z; Das A; Gogoi R; Nishmitha K 3 Biotech; 2024 Sep; 14(9):210. PubMed ID: 39188534 [TBL] [Abstract][Full Text] [Related]
14. Tomato receptor-like cytoplasmic kinase Fir1 is involved in flagellin signaling and preinvasion immunity. Sobol G; Majhi BB; Pasmanik-Chor M; Zhang N; Roberts HM; Martin GB; Sessa G Plant Physiol; 2023 May; 192(1):565-581. PubMed ID: 36511947 [TBL] [Abstract][Full Text] [Related]
15. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. Yuan M; Huang Y; Ge W; Jia Z; Song S; Zhang L; Huang Y BMC Genomics; 2019 Feb; 20(1):144. PubMed ID: 30777003 [TBL] [Abstract][Full Text] [Related]
16. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Martínez-Medina A; Fernández I; Sánchez-Guzmán MJ; Jung SC; Pascual JA; Pozo MJ Front Plant Sci; 2013; 4():206. PubMed ID: 23805146 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Thilmony R; Underwood W; He SY Plant J; 2006 Apr; 46(1):34-53. PubMed ID: 16553894 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive Analysis of Xu S; Zhang Z; Zhou J; Han X; Song K; Gu H; Zhu S; Sun L Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36360252 [TBL] [Abstract][Full Text] [Related]
19. Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea. Zhang H; Huang L; Dai Y; Liu S; Hong Y; Tian L; Huang L; Cao Z; Li D; Song F Front Plant Sci; 2015; 6():686. PubMed ID: 26388886 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Romero-Pérez A; Ameye M; Audenaert K; Van Damme EJM Front Plant Sci; 2021; 12():692606. PubMed ID: 34394146 [No Abstract] [Full Text] [Related] [Next] [New Search]