These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 3242309)

  • 1. Biotransformation of 1,4-cineole, a monoterpene ether.
    Asakawa Y; Toyota M; Ishida T
    Xenobiotica; 1988 Oct; 18(10):1129-34. PubMed ID: 3242309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes.
    Miyazawa M; Shindo M; Shimada T
    Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of 1,8-cineole by human liver microsomes.
    Miyazawa M; Shindo M
    Nat Prod Lett; 2001; 15(1):49-53. PubMed ID: 11547423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of monoterpenes: partial purification, characterization, and mechanism of action of 1,8-cineole synthase.
    Croteau R; Alonso WR; Koepp AE; Johnson MA
    Arch Biochem Biophys; 1994 Feb; 309(1):184-92. PubMed ID: 8117108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic disposition of a monoterpene ketone, piperitenone, in rats: evidence for the formation of a known toxin, p-cresol.
    Madyastha KM; Gaikwad NW
    Drug Metab Dispos; 1999 Jan; 27(1):74-80. PubMed ID: 9884312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of a monoterpene ketone, piperitenone, and related terpenoids using Mucor piriformis.
    Thulasiram HV; Madyastha KM
    Can J Microbiol; 2005 Jun; 51(6):447-54. PubMed ID: 16121222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiinflammatory effects of euclyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo.
    Juergens UR; Stöber M; Schmidt-Schilling L; Kleuver T; Vetter H
    Eur J Med Res; 1998 Sep; 3(9):407-12. PubMed ID: 9737886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1.
    Mi J; Schewe H; Buchhaupt M; Holtmann D; Schrader J
    World J Microbiol Biotechnol; 2016 Jul; 32(7):112. PubMed ID: 27263007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of 1,8-cineole in the brushtail possum (Trichosurus vulpecula).
    Boyle R; McLean S; Davies NW
    Xenobiotica; 2000 Sep; 30(9):915-32. PubMed ID: 11055269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxylation of 1,8-cineole by Mucor ramannianus and Aspergillus niger.
    Ramos Ade S; Ribeiro JB; Teixeira BG; Ferreira JL; Silva JR; Ferreira Ado A; de Souza RO; Amaral AC
    Braz J Microbiol; 2015 Mar; 46(1):261-4. PubMed ID: 26221115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective biotransformation of aryl-isopropyl, -isopropenyl, and -propenyl groups by the rabbit or by the rat.
    Ishida T; Matsumoto T; Caldwell J; Drake A
    Enantiomer; 1998; 3(2):133-47. PubMed ID: 9783432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terpenoids biotransformation in mammals III: Biotransformation of alpha-pinene, beta-pinene, pinane, 3-carene, carane, myrcene, and p-cymene in rabbits.
    Ishida T; Asakawa Y; Takemoto T; Aratani T
    J Pharm Sci; 1981 Apr; 70(4):406-15. PubMed ID: 7229954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolites of dietary 1,8-cineole in the male koala (Phascolarctos cinereus).
    Boyle R; McLean S; Foley W; Davies NW; Peacock EJ; Moore B
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Aug; 129(4):385-95. PubMed ID: 11489436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for eliminating monoterpenes of sagebrush by specialist and generalist rabbits.
    Shipley LA; Davis EM; Felicetti LA; McLean S; Forbey JS
    J Chem Ecol; 2012 Sep; 38(9):1178-89. PubMed ID: 23053918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential metabolism of 1,8-cineole in insects.
    Southwell IA; Russell MF; Maddox CD; Wheeler GS
    J Chem Ecol; 2003 Jan; 29(1):83-94. PubMed ID: 12647855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the metabolism of a monoterpene ketone, R-(+)-pulegone--a hepatotoxin in rat: isolation and characterization of new metabolites.
    Madyastha KM; Raj CP
    Xenobiotica; 1993 May; 23(5):509-18. PubMed ID: 8342298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetics of 1,8-cineole, a dietary toxin, in the brushtail possum (Trichosurus vulpecula): significance for feeding.
    McLean S; Boyle RR; Brandon S; Davies NW; Sorensen JS
    Xenobiotica; 2007 Sep; 37(9):903-22. PubMed ID: 17896321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro.
    Juergens UR; Stöber M; Vetter H
    Eur J Med Res; 1998 Nov; 3(11):508-10. PubMed ID: 9810029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of citral, an alpha,beta-unsaturated aldehyde, in male F344 rats.
    Diliberto JJ; Srinivas P; Overstreet D; Usha G; Burka LT; Birnbaum LS
    Drug Metab Dispos; 1990; 18(6):866-75. PubMed ID: 1981530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of (±)-lavandulol and (±)-tetrahydrolavandulol by a fungal strain Rhizopus oryzae.
    Daramwar PP; Rincy R; Niloferjahan S; Krithika R; Gulati A; Yadav A; Sharma R; Thulasiram HV
    Bioresour Technol; 2012 Jul; 115():70-4. PubMed ID: 22153597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.