These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32423675)

  • 21. Construction and comprehensive characterization of an EcLDCc-CatIB set-varying linkers and aggregation inducing tags.
    Küsters K; Pohl M; Krauss U; Ölçücü G; Albert S; Jaeger KE; Wiechert W; Oldiges M
    Microb Cell Fact; 2021 Feb; 20(1):49. PubMed ID: 33596923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New properties of inclusion bodies with implications for biotechnology.
    Peternel S; Jevsevar S; Bele M; Gaberc-Porekar V; Menart V
    Biotechnol Appl Biochem; 2008 Apr; 49(Pt 4):239-46. PubMed ID: 17708747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. D-amino acids in the brain: the biochemistry of brain serine racemase.
    Baumgart F; Rodríguez-Crespo I
    FEBS J; 2008 Jul; 275(14):3538-45. PubMed ID: 18564178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli.
    Castellanos-Mendoza A; Castro-Acosta RM; Olvera A; Zavala G; Mendoza-Vera M; García-Hernández E; Alagón A; Trujillo-Roldán MA; Valdez-Cruz NA
    Microb Cell Fact; 2014 Sep; 13():137. PubMed ID: 25213001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications.
    Roca-Pinilla R; Fortuna S; Natalello A; Sánchez-Chardi A; Ami D; Arís A; Garcia-Fruitós E
    Microb Cell Fact; 2020 Sep; 19(1):175. PubMed ID: 32887587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine.
    Krauss U; Jäger VD; Diener M; Pohl M; Jaeger KE
    J Biotechnol; 2017 Sep; 258():136-147. PubMed ID: 28465211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overproduced Brucella abortus PdhS-mCherry forms soluble aggregates in Escherichia coli, partially associating with mobile foci of IbpA-YFP.
    Van der Henst C; Charlier C; Deghelt M; Wouters J; Matroule JY; Letesson JJ; De Bolle X
    BMC Microbiol; 2010 Sep; 10():248. PubMed ID: 20920169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174.
    Arias CA; Martín-Martinez M; Blundell TL; Arthur M; Courvalin P; Reynolds PE
    Mol Microbiol; 1999 Mar; 31(6):1653-64. PubMed ID: 10209740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli.
    Wu W; Xing L; Zhou B; Lin Z
    Microb Cell Fact; 2011 Feb; 10():9. PubMed ID: 21320350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailoring the properties of (catalytically)-active inclusion bodies.
    Jäger VD; Kloss R; Grünberger A; Seide S; Hahn D; Karmainski T; Piqueray M; Embruch J; Longerich S; Mackfeld U; Jaeger KE; Wiechert W; Pohl M; Krauss U
    Microb Cell Fact; 2019 Feb; 18(1):33. PubMed ID: 30732596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coiled-coil inspired functional inclusion bodies.
    Gil-Garcia M; Navarro S; Ventura S
    Microb Cell Fact; 2020 Jun; 19(1):117. PubMed ID: 32487230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of an E. coli signal sequence as a versatile inclusion body tag.
    Jong WS; Vikström D; Houben D; van den Berg van Saparoea HB; de Gier JW; Luirink J
    Microb Cell Fact; 2017 Mar; 16(1):50. PubMed ID: 28320377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Astrocytes in primary cultures express serine racemase, synthesize d-serine and acquire A1 reactive astrocyte features.
    Li S; Uno Y; Rudolph U; Cobb J; Liu J; Anderson T; Levy D; Balu DT; Coyle JT
    Biochem Pharmacol; 2018 May; 151():245-251. PubMed ID: 29305854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution of eukaryotic serine racemases in the bacterial domain and characterization of a representative protein in Roseobacter litoralis Och 149.
    Kubota T; Shimamura S; Kobayashi T; Nunoura T; Deguchi S
    Microbiology (Reading); 2016 Jan; 162(1):53-61. PubMed ID: 26475231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal ion dependency of serine racemase from Dictyostelium discoideum.
    Ito T; Murase H; Maekawa M; Goto M; Hayashi S; Saito H; Maki M; Hemmi H; Yoshimura T
    Amino Acids; 2012 Oct; 43(4):1567-76. PubMed ID: 22311068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytically-active inclusion bodies for biotechnology-general concepts, optimization, and application.
    Jäger VD; Lamm R; Küsters K; Ölçücü G; Oldiges M; Jaeger KE; Büchs J; Krauss U
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7313-7329. PubMed ID: 32651598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new strategy to decrease N-methyl-D-aspartate (NMDA) receptor coactivation: inhibition of D-serine synthesis by converting serine racemase into an eliminase.
    Panizzutti R; De Miranda J; Ribeiro CS; Engelender S; Wolosker H
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5294-9. PubMed ID: 11309496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Serine racemase and the serine shuttle between neurons and astrocytes.
    Wolosker H
    Biochim Biophys Acta; 2011 Nov; 1814(11):1558-66. PubMed ID: 21224019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility.
    Huang Z; Zhang C; Chen S; Ye F; Xing XH
    Microb Cell Fact; 2013 Mar; 12():25. PubMed ID: 23497261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.