These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 32423799)
1. 3D reconstruction and flexibility of the hybrid engine Acetobacterium woodii F-ATP synthase. Kamariah N; Huber RG; Bond PJ; Müller V; Grüber G Biochem Biophys Res Commun; 2020 Jun; 527(2):518-524. PubMed ID: 32423799 [TBL] [Abstract][Full Text] [Related]
2. The structural features of Acetobacterium woodii F-ATP synthase reveal the importance of the unique subunit γ-loop in Na Bogdanović N; Trifunović D; Sielaff H; Westphal L; Bhushan S; Müller V; Grüber G FEBS J; 2019 May; 286(10):1894-1907. PubMed ID: 30791207 [TBL] [Abstract][Full Text] [Related]
3. Stoichiometry and deletion analyses of subunits in the heterotrimeric F-ATP synthase c ring from the acetogenic bacterium Acetobacterium woodii. Brandt K; Müller DB; Hoffmann J; Langer JD; Brutschy B; Morgner N; Müller V FEBS J; 2016 Feb; 283(3):510-20. PubMed ID: 26613566 [TBL] [Abstract][Full Text] [Related]
4. Structure and subunit arrangement of Mycobacterial F Kamariah N; Huber RG; Nartey W; Bhushan S; Bond PJ; Grüber G J Struct Biol; 2019 Aug; 207(2):199-208. PubMed ID: 31132404 [TBL] [Abstract][Full Text] [Related]
5. Functional production of the Na+ F1F(O) ATP synthase from Acetobacterium woodii in Escherichia coli requires the native AtpI. Brandt K; Müller DB; Hoffmann J; Hübert C; Brutschy B; Deckers-Hebestreit G; Müller V J Bioenerg Biomembr; 2013 Feb; 45(1-2):15-23. PubMed ID: 23054076 [TBL] [Abstract][Full Text] [Related]
6. An intermediate step in the evolution of ATPases: a hybrid F(0)-V(0) rotor in a bacterial Na(+) F(1)F(0) ATP synthase. Fritz M; Klyszejko AL; Morgner N; Vonck J; Brutschy B; Muller DJ; Meier T; Müller V FEBS J; 2008 May; 275(9):1999-2007. PubMed ID: 18355313 [TBL] [Abstract][Full Text] [Related]
7. ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases. Müller V; Lingl A; Lewalter K; Fritz M J Bioenerg Biomembr; 2005 Dec; 37(6):455-60. PubMed ID: 16691483 [TBL] [Abstract][Full Text] [Related]
8. High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na⁺-coupled ATP synthase. Matthies D; Zhou W; Klyszejko AL; Anselmi C; Yildiz Ö; Brandt K; Müller V; Faraldo-Gómez JD; Meier T Nat Commun; 2014 Nov; 5():5286. PubMed ID: 25381992 [TBL] [Abstract][Full Text] [Related]
9. Hybrid rotors in F1F(o) ATP synthases: subunit composition, distribution, and physiological significance. Brandt K; Müller V Biol Chem; 2015 Sep; 396(9-10):1031-42. PubMed ID: 25838297 [TBL] [Abstract][Full Text] [Related]
10. Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε. Bogdanović N; Sundararaman L; Kamariah N; Tyagi A; Bhushan S; Ragunathan P; Shin J; Dick T; Grüber G J Struct Biol; 2018 Dec; 204(3):420-434. PubMed ID: 30342092 [TBL] [Abstract][Full Text] [Related]
11. The ins and outs of Na(+) bioenergetics in Acetobacterium woodii. Schmidt S; Biegel E; Müller V Biochim Biophys Acta; 2009 Jun; 1787(6):691-6. PubMed ID: 19167341 [TBL] [Abstract][Full Text] [Related]
12. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. Zhou A; Rohou A; Schep DG; Bason JV; Montgomery MG; Walker JE; Grigorieff N; Rubinstein JL Elife; 2015 Oct; 4():e10180. PubMed ID: 26439008 [TBL] [Abstract][Full Text] [Related]
13. Structure and Mechanisms of F-Type ATP Synthases. Kühlbrandt W Annu Rev Biochem; 2019 Jun; 88():515-549. PubMed ID: 30901262 [TBL] [Abstract][Full Text] [Related]
14. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F Murphy BJ; Klusch N; Langer J; Mills DJ; Yildiz Ö; Kühlbrandt W Science; 2019 Jun; 364(6446):. PubMed ID: 31221832 [TBL] [Abstract][Full Text] [Related]
15. An intermediate step in the evolution of ATPases--the F1F0-ATPase from Acetobacterium woodii contains F-type and V-type rotor subunits and is capable of ATP synthesis. Fritz M; Müller V FEBS J; 2007 Jul; 274(13):3421-8. PubMed ID: 17555523 [TBL] [Abstract][Full Text] [Related]
16. Near-neighbor interactions of the membrane-embedded subunits of the mitochondrial ATP synthase of a chlorophycean alga. Sánchez-Vásquez L; Vázquez-Acevedo M; de la Mora J; Vega-deLuna F; Cardol P; Remacle C; Dreyfus G; González-Halphen D Biochim Biophys Acta Bioenerg; 2017 Jul; 1858(7):497-509. PubMed ID: 28472636 [TBL] [Abstract][Full Text] [Related]
17. Atypical composition and structure of the mitochondrial dimeric ATP synthase from Euglena gracilis. Yadav KNS; Miranda-Astudillo HV; Colina-Tenorio L; Bouillenne F; Degand H; Morsomme P; González-Halphen D; Boekema EJ; Cardol P Biochim Biophys Acta Bioenerg; 2017 Apr; 1858(4):267-275. PubMed ID: 28089911 [TBL] [Abstract][Full Text] [Related]
18. High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Srivastava AP; Luo M; Zhou W; Symersky J; Bai D; Chambers MG; Faraldo-Gómez JD; Liao M; Mueller DM Science; 2018 May; 360(6389):. PubMed ID: 29650704 [TBL] [Abstract][Full Text] [Related]
19. Structure of the mitochondrial ATP synthase by electron cryomicroscopy. Rubinstein JL; Walker JE; Henderson R EMBO J; 2003 Dec; 22(23):6182-92. PubMed ID: 14633978 [TBL] [Abstract][Full Text] [Related]