These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32423827)

  • 1. WRKY33-PIF4 loop is required for the regulation of H
    Sun Y; Liu Z; Guo J; Zhu Z; Zhou Y; Guo C; Hu Y; Li J; Shangguan Y; Li T; Hu Y; Wu R; Li W; Rochaix JD; Miao Y; Sun X
    Biochem Biophys Res Commun; 2020 Jul; 527(4):922-928. PubMed ID: 32423827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) negatively regulates anthocyanin accumulation by inhibiting PAP1 transcription in Arabidopsis seedlings.
    Liu Z; Wang Y; Fan K; Li Z; Jia Q; Lin W; Zhang Y
    Plant Sci; 2021 Feb; 303():110788. PubMed ID: 33487363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Miyachi M; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1965-73. PubMed ID: 23037004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5.
    Filo J; Wu A; Eliason E; Richardson T; Thines BC; Harmon FG
    Plant Signal Behav; 2015; 10(3):e992707. PubMed ID: 25738547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway.
    Kim S; Hwang G; Kim S; Thi TN; Kim H; Jeong J; Kim J; Kim J; Choi G; Oh E
    Nat Commun; 2020 Feb; 11(1):1053. PubMed ID: 32103019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clade Ib basic helix-loop-helix transcription factor, bHLH101, acts as a regulatory component in photo-oxidative stress responses.
    Noshi M; Tanabe N; Okamoto Y; Mori D; Ohme-Takagi M; Tamoi M; Shigeoka S
    Plant Sci; 2018 Sep; 274():101-108. PubMed ID: 30080593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings.
    Liu Z; Zhang Y; Wang J; Li P; Zhao C; Chen Y; Bi Y
    Plant Sci; 2015 Sep; 238():64-72. PubMed ID: 26259175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens.
    Zheng Z; Qamar SA; Chen Z; Mengiste T
    Plant J; 2006 Nov; 48(4):592-605. PubMed ID: 17059405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.
    Bi C; Ma Y; Wu Z; Yu YT; Liang S; Lu K; Wang XF
    Plant Mol Biol; 2017 May; 94(1-2):197-213. PubMed ID: 28391398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) Interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) Linking Iron Deficiency and Oxidative Stress Responses.
    Le CT; Brumbarova T; Ivanov R; Stoof C; Weber E; Mohrbacher J; Fink-Straube C; Bauer P
    Plant Physiol; 2016 Jan; 170(1):540-57. PubMed ID: 26556796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of epidermal clocks for regulation of hypocotyl elongation through PIF4 and IAA29.
    Shimizu H; Torii K; Araki T; Endo M
    Plant Signal Behav; 2016; 11(2):e1143999. PubMed ID: 26829165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gene-stacking approach to overcome the trade-off between drought stress tolerance and growth in Arabidopsis.
    Kudo M; Kidokoro S; Yoshida T; Mizoi J; Kojima M; Takebayashi Y; Sakakibara H; Fernie AR; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2019 Jan; 97(2):240-256. PubMed ID: 30285298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex.
    Nieto C; López-Salmerón V; Davière JM; Prat S
    Curr Biol; 2015 Jan; 25(2):187-193. PubMed ID: 25557667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis EARLY FLOWERING3 increases salt tolerance by suppressing salt stress response pathways.
    Sakuraba Y; Bülbül S; Piao W; Choi G; Paek NC
    Plant J; 2017 Dec; 92(6):1106-1120. PubMed ID: 29032592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of arginine decarboxylase gene-expression results in reactive oxygen species accumulation in Arabidopsis.
    Ana Isabel CM; Francisco Ignacio JR; Margarita RK; Gill SS; Alicia BF; Juan Francisco JB
    Biochem Biophys Res Commun; 2018 Dec; 506(4):1071-1077. PubMed ID: 30409429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions.
    Lee S; Lee HJ; Huh SU; Paek KH; Ha JH; Park CM
    Plant Sci; 2014 Oct; 227():76-83. PubMed ID: 25219309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant development: PIF4 integrates diverse environmental signals.
    Lucyshyn D; Wigge PA
    Curr Biol; 2009 Mar; 19(6):R265-6. PubMed ID: 19321147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4.
    Sun Z; Li M; Zhou Y; Guo T; Liu Y; Zhang H; Fang Y
    PLoS Genet; 2018 Mar; 14(3):e1007247. PubMed ID: 29522510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Tripartite Amplification Loop Involving the Transcription Factor WRKY75, Salicylic Acid, and Reactive Oxygen Species Accelerates Leaf Senescence.
    Guo P; Li Z; Huang P; Li B; Fang S; Chu J; Guo H
    Plant Cell; 2017 Nov; 29(11):2854-2870. PubMed ID: 29061866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.