These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 32424050)
1. A Stanković D; Claudius AK; Schertel T; Bresser T; Uhlirova M Dis Model Mech; 2020 Jun; 13(6):. PubMed ID: 32424050 [TBL] [Abstract][Full Text] [Related]
2. The manner of decay of genetically defective EYS gene transcripts in photoreceptor-directed fibroblasts derived from retinitis pigmentosa patients depends on the type of mutation. Seko Y; Iwanami M; Miyamoto-Matsui K; Takita S; Aoi N; Umezawa A; Kato S Stem Cell Res Ther; 2018 Oct; 9(1):279. PubMed ID: 30359287 [TBL] [Abstract][Full Text] [Related]
3. Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa. Linder B; Dill H; Hirmer A; Brocher J; Lee GP; Mathavan S; Bolz HJ; Winkler C; Laggerbauer B; Fischer U Hum Mol Genet; 2011 Jan; 20(2):368-77. PubMed ID: 21051334 [TBL] [Abstract][Full Text] [Related]
4. Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing. Mayerle M; Guthrie C RNA; 2016 May; 22(5):793-809. PubMed ID: 26968627 [TBL] [Abstract][Full Text] [Related]
5. RNA Splicing Factor Mutations That Cause Retinitis Pigmentosa Result in Circadian Dysregulation. Shakhmantsir I; Dooley SJ; Kishore S; Chen D; Pierce E; Bennett J; Sehgal A J Biol Rhythms; 2020 Feb; 35(1):72-83. PubMed ID: 31726916 [TBL] [Abstract][Full Text] [Related]
6. Drosophila melanogaster: A Valuable Genetic Model Organism to Elucidate the Biology of Retinitis Pigmentosa. Lehmann M; Knust E; Hebbar S Methods Mol Biol; 2019; 1834():221-249. PubMed ID: 30324448 [TBL] [Abstract][Full Text] [Related]
7. The role of splicing factors in retinitis pigmentosa: links to cilia. Maxwell DW; O'Keefe RT; Roy S; Hentges KE Biochem Soc Trans; 2021 Jun; 49(3):1221-1231. PubMed ID: 34060618 [TBL] [Abstract][Full Text] [Related]
8. The splicing factor Prp31 is essential for photoreceptor development in Drosophila. Ray P; Luo X; Rao EJ; Basha A; Woodruff EA; Wu JY Protein Cell; 2010 Mar; 1(3):267-74. PubMed ID: 21203973 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the C-terminal domain of splicing factor Prp8 carrying retinitis pigmentosa mutants. Zhang L; Shen J; Guarnieri MT; Heroux A; Yang K; Zhao R Protein Sci; 2007 Jun; 16(6):1024-31. PubMed ID: 17473007 [TBL] [Abstract][Full Text] [Related]
11. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Martínez-Gimeno M; Gamundi MJ; Hernan I; Maseras M; Millá E; Ayuso C; García-Sandoval B; Beneyto M; Vilela C; Baiget M; Antiñolo G; Carballo M Invest Ophthalmol Vis Sci; 2003 May; 44(5):2171-7. PubMed ID: 12714658 [TBL] [Abstract][Full Text] [Related]
12. Autosomal dominant retinitis pigmentosa-associated gene PRPF8 is essential for hypoxia-induced mitophagy through regulating ULK1 mRNA splicing. Xu G; Li T; Chen J; Li C; Zhao H; Yao C; Dong H; Wen K; Wang K; Zhao J; Xia Q; Zhou T; Zhang H; Gao P; Li A; Pan X Autophagy; 2018; 14(10):1818-1830. PubMed ID: 30103670 [TBL] [Abstract][Full Text] [Related]
13. Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Towns KV; Kipioti A; Long V; McKibbin M; Maubaret C; Vaclavik V; Ehsani P; Springell K; Kamal M; Ramesar RS; Mackey DA; Moore AT; Mukhopadhyay R; Webster AR; Black GC; O'Sullivan J; Bhattacharya SS; Pierce EA; Beggs JD; Inglehearn CF Hum Mutat; 2010 May; 31(5):E1361-76. PubMed ID: 20232351 [TBL] [Abstract][Full Text] [Related]
14. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). den Hollander AI; ten Brink JB; de Kok YJ; van Soest S; van den Born LI; van Driel MA; van de Pol DJ; Payne AM; Bhattacharya SS; Kellner U; Hoyng CB; Westerveld A; Brunner HG; Bleeker-Wagemakers EM; Deutman AF; Heckenlively JR; Cremers FP; Bergen AA Nat Genet; 1999 Oct; 23(2):217-21. PubMed ID: 10508521 [TBL] [Abstract][Full Text] [Related]
15. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Pena V; Liu S; Bujnicki JM; Lührmann R; Wahl MC Mol Cell; 2007 Feb; 25(4):615-24. PubMed ID: 17317632 [TBL] [Abstract][Full Text] [Related]
16. Gene Knockdown in Zebrafish (Danio rerio) as a Tool to Model Photoreceptor Diseases. Dill H; Fischer U Methods Mol Biol; 2019; 1834():209-219. PubMed ID: 30324447 [TBL] [Abstract][Full Text] [Related]
17. Retinal Pigment Epithelial Cells: The Unveiled Component in the Etiology of Prpf Splicing Factor-Associated Retinitis Pigmentosa. Hamieh A; Nandrot EF Adv Exp Med Biol; 2019; 1185():227-231. PubMed ID: 31884616 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of splicing efficiency in lymphoblastoid cell lines from patients with splicing-factor retinitis pigmentosa. Ivings L; Towns KV; Matin MA; Taylor C; Ponchel F; Grainger RJ; Ramesar RS; Mackey DA; Inglehearn CF Mol Vis; 2008; 14():2357-66. PubMed ID: 19096719 [TBL] [Abstract][Full Text] [Related]
19. Mutation Analysis of Pre-mRNA Splicing Genes PRPF31, PRPF8, and SNRNP200 in Chinese Families with Autosomal Dominant Retinitis Pigmentosa. Wu Z; Zhong M; Li M; Huang H; Liao J; Lu A; Guo K; Ma N; Lin J; Duan J; Liu L; Xu F; Zhong Z; Chen J Curr Mol Med; 2018; 18(5):287-294. PubMed ID: 30360737 [TBL] [Abstract][Full Text] [Related]
20. Targeted RP9 ablation and mutagenesis in mouse photoreceptor cells by CRISPR-Cas9. Lv JN; Zhou GH; Chen X; Chen H; Wu KC; Xiang L; Lei XL; Zhang X; Wu RH; Jin ZB Sci Rep; 2017 Feb; 7():43062. PubMed ID: 28216641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]