Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 32424069)

  • 1. MEDEA: analysis of transcription factor binding motifs in accessible chromatin.
    Mariani L; Weinand K; Gisselbrecht SS; Bulyk ML
    Genome Res; 2020 May; 30(5):736-748. PubMed ID: 32424069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence and chromatin determinants of cell-type-specific transcription factor binding.
    Arvey A; Agius P; Noble WS; Leslie C
    Genome Res; 2012 Sep; 22(9):1723-34. PubMed ID: 22955984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium.
    Wang J; Zhuang J; Iyer S; Lin XY; Greven MC; Kim BH; Moore J; Pierce BG; Dong X; Virgil D; Birney E; Hung JH; Weng Z
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D171-6. PubMed ID: 23203885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors.
    Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z
    Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments.
    Kheradpour P; Kellis M
    Nucleic Acids Res; 2014 Mar; 42(5):2976-87. PubMed ID: 24335146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explicit DNase sequence bias modeling enables high-resolution transcription factor footprint detection.
    Yardımcı GG; Frank CL; Crawford GE; Ohler U
    Nucleic Acids Res; 2014 Oct; 42(19):11865-78. PubMed ID: 25294828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks.
    Cazares TA; Rizvi FW; Iyer B; Chen X; Kotliar M; Bejjani AT; Wayman JA; Donmez O; Wronowski B; Parameswaran S; Kottyan LC; Barski A; Weirauch MT; Prasath VBS; Miraldi ER
    PLoS Comput Biol; 2023 Jan; 19(1):e1010863. PubMed ID: 36719906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory chromatin landscape in
    Tannenbaum M; Sarusi-Portuguez A; Krispil R; Schwartz M; Loza O; Benichou JIC; Mosquna A; Hakim O
    Plant Methods; 2018; 14():113. PubMed ID: 30598689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes.
    Lu Z; Hofmeister BT; Vollmers C; DuBois RM; Schmitz RJ
    Nucleic Acids Res; 2017 Apr; 45(6):e41. PubMed ID: 27903897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data.
    Schultheis H; Bentsen M; Heger V; Looso M
    Sci Rep; 2024 Apr; 14(1):9275. PubMed ID: 38654130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Differential Transcription Factor Activity from ATAC-Seq Data.
    Tripodi IJ; Allen MA; Dowell RD
    Molecules; 2018 May; 23(5):. PubMed ID: 29748466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells.
    Wong KC; Li Y; Peng C
    Bioinformatics; 2016 Feb; 32(3):321-4. PubMed ID: 26411866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility.
    Chen X; Yu B; Carriero N; Silva C; Bonneau R
    Nucleic Acids Res; 2017 May; 45(8):4315-4329. PubMed ID: 28334916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anchor: trans-cell type prediction of transcription factor binding sites.
    Li H; Quang D; Guan Y
    Genome Res; 2019 Feb; 29(2):281-292. PubMed ID: 30567711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiFET: sequencing Bias-free transcription factor Footprint Enrichment Test.
    Youn A; Marquez EJ; Lawlor N; Stitzel ML; Ucar D
    Nucleic Acids Res; 2019 Jan; 47(2):e11. PubMed ID: 30428075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.