These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32424088)

  • 1. Ediacaran reorganization of the marine phosphorus cycle.
    Laakso TA; Sperling EA; Johnston DT; Knoll AH
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11961-11967. PubMed ID: 32424088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical Characteristics of Trace Elements and Mineralization Model of the Ediacaran-Early Cambrian Phosphorites, South China.
    Zhang L; Zhang M; Zhu G
    ACS Omega; 2024 Mar; 9(12):13483-13493. PubMed ID: 38559950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sedimentary record of the evolution of the global marine phosphorus cycle.
    Planavsky NJ; Asael D; Rooney AD; Robbins LJ; Gill BC; Dehler CM; Cole DB; Porter SM; Love GD; Konhauser KO; Reinhard CT
    Geobiology; 2023 Mar; 21(2):168-174. PubMed ID: 36471206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic-Phanerozoic transition.
    Lenton TM; Daines SJ
    Emerg Top Life Sci; 2018 Sep; 2(2):267-278. PubMed ID: 32412617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective.
    Filippelli GM
    Chemosphere; 2011 Aug; 84(6):759-66. PubMed ID: 21376366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium isotopic constraints on the evolution of continental clay mineral factory and marine oxygenation in the earliest Paleozoic Era.
    Wei GY; Zhao M; Sperling EA; Gaines RR; Kalderon-Asael B; Shen J; Li C; Zhang F; Li G; Zhou C; Cai C; Chen D; Xiao KQ; Jiang L; Ling HF; Planavsky NJ; Tarhan LG
    Sci Adv; 2024 Mar; 10(13):eadk2152. PubMed ID: 38552018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decline and fall of the Ediacarans: late-Neoproterozoic extinctions and the rise of the modern biosphere.
    Mussini G; Dunn FS
    Biol Rev Camb Philos Soc; 2024 Feb; 99(1):110-130. PubMed ID: 37667585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen-based symbioses, phosphorus availability, and accounting for a modern world more productive than the Paleozoic.
    Boyce CK; Ibarra DE; Nelsen MP; D'Antonio MP
    Geobiology; 2023 Jan; 21(1):86-101. PubMed ID: 35949039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Earliest land plants created modern levels of atmospheric oxygen.
    Lenton TM; Dahl TW; Daines SJ; Mills BJ; Ozaki K; Saltzman MR; Porada P
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9704-9. PubMed ID: 27528678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of cellular metabolism and the rise of a globally productive biosphere.
    Braakman R
    Free Radic Biol Med; 2019 Aug; 140():172-187. PubMed ID: 31082508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling.
    Alcott LJ; Mills BJW; Poulton SW
    Science; 2019 Dec; 366(6471):1333-1337. PubMed ID: 31826958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oceanic oxygenation events in the anoxic Ediacaran ocean.
    Sahoo SK; Planavsky NJ; Jiang G; Kendall B; Owens JD; Wang X; Shi X; Anbar AD; Lyons TW
    Geobiology; 2016 Sep; 14(5):457-68. PubMed ID: 27027776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional nutrient decrease drove redox stabilisation and metazoan diversification in the late Ediacaran Nama Group, Namibia.
    Bowyer FT; Shore AJ; Wood RA; Alcott LJ; Thomas AL; Butler IB; Curtis A; Hainanan S; Curtis-Walcott S; Penny AM; Poulton SW
    Sci Rep; 2020 Feb; 10(1):2240. PubMed ID: 32042140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibrating the coevolution of Ediacaran life and environment.
    Rooney AD; Cantine MD; Bergmann KD; Gómez-Pérez I; Al Baloushi B; Boag TH; Busch JF; Sperling EA; Strauss JV
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16824-16830. PubMed ID: 32632000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization.
    Wu S; Zhao Y; Chen Y; Dong X; Wang M; Wang G
    Sci Total Environ; 2019 Mar; 657():1294-1303. PubMed ID: 30677896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tectonically driven Ediacaran oxygenation event.
    Williams JJ; Mills BJW; Lenton TM
    Nat Commun; 2019 Jun; 10(1):2690. PubMed ID: 31217418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace metals in Antarctica related to climate change and increasing human impact.
    Bargagli R
    Rev Environ Contam Toxicol; 2000; 166():129-73. PubMed ID: 10868078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering the spatial heterogeneity of Ediacaran carbon cycling.
    Li C; Hardisty DS; Luo G; Huang J; Algeo TJ; Cheng M; Shi W; An Z; Tong J; Xie S; Jiao N; Lyons TW
    Geobiology; 2017 Mar; 15(2):211-224. PubMed ID: 27997754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.
    Zepp RG; Erickson DJ; Paul ND; Sulzberger B
    Photochem Photobiol Sci; 2007 Mar; 6(3):286-300. PubMed ID: 17344963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental context for the terminal Ediacaran biomineralization of animals.
    Cui H; Kaufman AJ; Xiao S; Peek S; Cao H; Min X; Cai Y; Siegel Z; Liu XM; Peng Y; Schiffbauer JD; Martin AJ
    Geobiology; 2016 Jul; 14(4):344-63. PubMed ID: 27038407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.