These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32424184)

  • 1. Accurate deep neural network inference using computational phase-change memory.
    Joshi V; Le Gallo M; Haefeli S; Boybat I; Nandakumar SR; Piveteau C; Dazzi M; Rajendran B; Sebastian A; Eleftheriou E
    Nat Commun; 2020 May; 11(1):2473. PubMed ID: 32424184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating Inference of Convolutional Neural Networks Using In-memory Computing.
    Dazzi M; Sebastian A; Benini L; Eleftheriou E
    Front Comput Neurosci; 2021; 15():674154. PubMed ID: 34413731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed-Precision Deep Learning Based on Computational Memory.
    Nandakumar SR; Le Gallo M; Piveteau C; Joshi V; Mariani G; Boybat I; Karunaratne G; Khaddam-Aljameh R; Egger U; Petropoulos A; Antonakopoulos T; Rajendran B; Sebastian A; Eleftheriou E
    Front Neurosci; 2020; 14():406. PubMed ID: 32477047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices.
    Spoon K; Tsai H; Chen A; Rasch MJ; Ambrogio S; Mackin C; Fasoli A; Friz AM; Narayanan P; Stanisavljevic M; Burr GW
    Front Comput Neurosci; 2021; 15():675741. PubMed ID: 34290595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DIET-SNN: A Low-Latency Spiking Neural Network With Direct Input Encoding and Leakage and Threshold Optimization.
    Rathi N; Roy K
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):3174-3182. PubMed ID: 34596559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BlocTrain: Block-Wise Conditional Training and Inference for Efficient Spike-Based Deep Learning.
    Srinivasan G; Roy K
    Front Neurosci; 2021; 15():603433. PubMed ID: 34776834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices.
    Gokmen T; Onen M; Haensch W
    Front Neurosci; 2017; 11():538. PubMed ID: 29066942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Training of Neural Networks on Noisy Hardware.
    Gokmen T
    Front Artif Intell; 2021; 4():699148. PubMed ID: 34568813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital Biologically Plausible Implementation of Binarized Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays.
    Hirtzlin T; Bocquet M; Penkovsky B; Klein JO; Nowak E; Vianello E; Portal JM; Querlioz D
    Front Neurosci; 2019; 13():1383. PubMed ID: 31998059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear tensor train format for deep neural network compression.
    Wang D; Zhao G; Chen H; Liu Z; Deng L; Li G
    Neural Netw; 2021 Dec; 144():320-333. PubMed ID: 34547670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiking Deep Residual Networks.
    Hu Y; Tang H; Pan G
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):5200-5205. PubMed ID: 34723807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network.
    Wu D; Yi X; Huang X
    Front Neurosci; 2022; 16():759900. PubMed ID: 35692427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantized Magnetic Domain Wall Synapse for Efficient Deep Neural Networks.
    Dhull S; Misba WA; Nisar A; Atulasimha J; Kaushik BK
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38470601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Committee machines-a universal method to deal with non-idealities in memristor-based neural networks.
    Joksas D; Freitas P; Chai Z; Ng WH; Buckwell M; Li C; Zhang WD; Xia Q; Kenyon AJ; Mehonic A
    Nat Commun; 2020 Aug; 11(1):4273. PubMed ID: 32848139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of Inference Accuracy Using Realistic RRAM Devices.
    Mehonic A; Joksas D; Ng WH; Buckwell M; Kenyon AJ
    Front Neurosci; 2019; 13():593. PubMed ID: 31249502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators.
    Rasch MJ; Mackin C; Le Gallo M; Chen A; Fasoli A; Odermatt F; Li N; Nandakumar SR; Narayanan P; Tsai H; Burr GW; Sebastian A; Narayanan V
    Nat Commun; 2023 Aug; 14(1):5282. PubMed ID: 37648721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimised weight programming for analogue memory-based deep neural networks.
    Mackin C; Rasch MJ; Chen A; Timcheck J; Bruce RL; Li N; Narayanan P; Ambrogio S; Le Gallo M; Nandakumar SR; Fasoli A; Luquin J; Friz A; Sebastian A; Tsai H; Burr GW
    Nat Commun; 2022 Jun; 13(1):3765. PubMed ID: 35773285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.