These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 32424240)

  • 21. Remodeling tumor microenvironment with nanomedicines.
    Martin JD; Miyazaki T; Cabral H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Nov; 13(6):e1730. PubMed ID: 34124849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity.
    Panagi M; Voutouri C; Mpekris F; Papageorgis P; Martin MR; Martin JD; Demetriou P; Pierides C; Polydorou C; Stylianou A; Louca M; Koumas L; Costeas P; Kataoka K; Cabral H; Stylianopoulos T
    Theranostics; 2020; 10(4):1910-1922. PubMed ID: 32042344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticle mediated cancer immunotherapy.
    Gupta J; Safdari HA; Hoque M
    Semin Cancer Biol; 2021 Feb; 69():307-324. PubMed ID: 32259643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DTX@VTX NPs synergy PD-L1 immune checkpoint nanoinhibitor to reshape immunosuppressive tumor microenvironment for enhancing chemo-immunotherapy.
    Zhang R; Wan Y; Lv H; Li F; Lee CS
    J Mater Chem B; 2021 Sep; 9(36):7544-7556. PubMed ID: 34551052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunomodulatory nanomedicine for colorectal cancer treatment: a landscape to be explored?
    Silveira MJ; Castro F; Oliveira MJ; Sarmento B
    Biomater Sci; 2021 May; 9(9):3228-3243. PubMed ID: 33949441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.
    Saleh R; Elkord E
    Semin Cancer Biol; 2020 Oct; 65():13-27. PubMed ID: 31362073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy.
    Jin Z; Sun X; Wang Y; Zhou C; Yang H; Zhou S
    Front Immunol; 2022; 13():1018903. PubMed ID: 36300110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanomedicine-Based Immunotherapy for the Treatment of Cancer Metastasis.
    Zhang P; Zhai Y; Cai Y; Zhao Y; Li Y
    Adv Mater; 2019 Dec; 31(49):e1904156. PubMed ID: 31566275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy.
    Chen Q; Xu L; Chen J; Yang Z; Liang C; Yang Y; Liu Z
    Biomaterials; 2017 Dec; 148():69-80. PubMed ID: 28968536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanomedicine Remodels Tumor Microenvironment for Solid Tumor Immunotherapy.
    Guo Y; Hu P; Shi J
    J Am Chem Soc; 2024 Apr; 146(15):10217-10233. PubMed ID: 38563421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors.
    Balta E; Wabnitz GH; Samstag Y
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies.
    Liu Y; Guo J; Huang L
    Theranostics; 2020; 10(7):3099-3117. PubMed ID: 32194857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cancer Immunotherapy with "Vascular-Immune" Crosstalk as Entry Point: Associated Mechanisms, Therapeutic Drugs and Nano-Delivery Systems.
    Jiang Z; Fang Z; Hong D; Wang X
    Int J Nanomedicine; 2024; 19():7383-7398. PubMed ID: 39050878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted drug delivery system for ovarian cancer microenvironment: Improving the effects of immunotherapy.
    Peng H; He X; Wang Q
    Front Immunol; 2022; 13():1035997. PubMed ID: 36405688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics.
    Grimaldi AM; Incoronato M; Salvatore M; Soricelli A
    Nanomedicine (Lond); 2017 Oct; 12(19):2349-2365. PubMed ID: 28868980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small molecular drugs reshape tumor microenvironment to synergize with immunotherapy.
    Han C; Zhang A; Liu Z; Moore C; Fu YX
    Oncogene; 2021 Feb; 40(5):885-898. PubMed ID: 33288883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy.
    Huang Y; Fan H; Ti H
    Asian J Pharm Sci; 2024 Apr; 19(2):100902. PubMed ID: 38595331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles.
    Zhang M; Kim JA; Huang AY
    Front Immunol; 2018; 9():341. PubMed ID: 29535722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in Cancer Nanovaccines: Harnessing Nanotechnology for Broadening Cancer Immune Response.
    Wang QT; Liu YX; Wang J; Wang H
    ChemMedChem; 2023 Jul; 18(13):e202200673. PubMed ID: 37088719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exosomes: Powerful weapon for cancer nano-immunoengineering.
    Pi YN; Xia BR; Jin MZ; Jin WL; Lou G
    Biochem Pharmacol; 2021 Apr; 186():114487. PubMed ID: 33647264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.