These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 32424240)

  • 41. Nanomedicine Targeting Myeloid-Derived Suppressor Cells Enhances Anti-Tumor Immunity.
    Yang EL; Sun ZJ
    Adv Healthc Mater; 2024 Apr; 13(9):e2303294. PubMed ID: 38288864
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Current perspectives and trends of CD39-CD73-eAdo/A2aR research in tumor microenvironment: a bibliometric analysis.
    Huang T; Ren X; Tang X; Wang Y; Ji R; Guo Q; Ma Q; Zheng Y; Hu Z; Zhou Y
    Front Immunol; 2024; 15():1427380. PubMed ID: 39188712
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy.
    Zhang Y; Chen X; Hu B; Zou B; Xu Y
    Nanomedicine (Lond); 2024; 19(21-22):1821-1840. PubMed ID: 39011582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of Immunotherapy Strategies Targeting Tumor Microenvironment Is Fiercely Ongoing.
    Bai R; Cui J
    Front Immunol; 2022; 13():890166. PubMed ID: 35833121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy.
    Bader JE; Voss K; Rathmell JC
    Mol Cell; 2020 Jun; 78(6):1019-1033. PubMed ID: 32559423
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A natural adhesive-based nanomedicine initiates photothermal-directed in situ immunotherapy with durability and maintenance.
    He Y; Sun H; Bao H; Hou J; Zhou Q; Wu F; Wang X; Sun M; Shi J; Tang G; Bai H
    Biomaterials; 2025 Jan; 312():122751. PubMed ID: 39121726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Peptides that immunoactivate the tumor microenvironment.
    Furukawa N; Popel AS
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188486. PubMed ID: 33276025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer.
    Zhao L; Liu Y; Zhang S; Wei L; Cheng H; Wang J; Wang J
    Cell Death Dis; 2022 Apr; 13(4):378. PubMed ID: 35444235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolving Tumor Characteristics and Smart Nanodrugs for Tumor Immunotherapy.
    Sun W; Xie S; Liu SF; Hu X; Xing D
    Int J Nanomedicine; 2024; 19():3919-3942. PubMed ID: 38708176
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Salicylic acid-based hypoxia-responsive chemodynamic nanomedicines boost antitumor immunotherapy by modulating immunosuppressive tumor microenvironment.
    Sun K; Yu J; Hu J; Chen J; Song J; Chen Z; Cai Z; Lu Z; Zhang L; Wang Z
    Acta Biomater; 2022 Aug; 148():230-243. PubMed ID: 35724919
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeting the immune microenvironment for ovarian cancer therapy.
    Blanc-Durand F; Clemence Wei Xian L; Tan DSP
    Front Immunol; 2023; 14():1328651. PubMed ID: 38164130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Small molecule innate immune modulators in cancer therapy.
    Goswami A; Goyal S; Khurana P; Singh K; Deb B; Kulkarni A
    Front Immunol; 2024; 15():1395655. PubMed ID: 39318624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoenabled Tumor Oxygenation Strategies for Overcoming Hypoxia-Associated Immunosuppression.
    Zhang C; Yan Q; Li J; Zhu Y; Zhang Y
    ACS Appl Bio Mater; 2021 Jan; 4(1):277-294. PubMed ID: 35014284
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy.
    Zhu Y; Yu X; Thamphiwatana SD; Zheng Y; Pang Z
    Acta Pharm Sin B; 2020 Nov; 10(11):2054-2074. PubMed ID: 33304779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy.
    Zhao YD; Muhetaerjiang M; An HW; Fang X; Zhao Y; Wang H
    Biomaterials; 2021 Jan; 268():120552. PubMed ID: 33307365
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advancement and Applications of Nanotherapy for Cancer Immune Microenvironment.
    He JJ; Li QQ; Zhao C; Zhou J; Wu J; Zhang HB; Zhao YQ; Zhang HH; Lei TY; Zhao XY; You Z; Song QB; Xu B
    Curr Med Sci; 2023 Aug; 43(4):631-646. PubMed ID: 37558863
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanomedicines for an Enhanced Immunogenic Cell Death-Based
    Zhao C; Wang C; Shan W; Wang Z; Chen X; Deng H
    Acc Chem Res; 2024 Mar; 57(6):905-918. PubMed ID: 38417027
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment.
    Gao S; Yang X; Xu J; Qiu N; Zhai G
    ACS Nano; 2021 Aug; 15(8):12567-12603. PubMed ID: 34339170
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression.
    Armitage JD; Newnes HV; McDonnell A; Bosco A; Waithman J
    Cells; 2021 Jan; 10(1):. PubMed ID: 33401460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.