These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 32424272)
1. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Zuo E; Sun Y; Yuan T; He B; Zhou C; Ying W; Liu J; Wei W; Zeng R; Li Y; Yang H Nat Methods; 2020 Jun; 17(6):600-604. PubMed ID: 32424272 [TBL] [Abstract][Full Text] [Related]
2. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Doman JL; Raguram A; Newby GA; Liu DR Nat Biotechnol; 2020 May; 38(5):620-628. PubMed ID: 32042165 [TBL] [Abstract][Full Text] [Related]
3. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects. Heo YB; Hwang GH; Kang SW; Bae S; Woo HM Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037 [TBL] [Abstract][Full Text] [Related]
4. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Grünewald J; Zhou R; Lareau CA; Garcia SP; Iyer S; Miller BR; Langner LM; Hsu JY; Aryee MJ; Joung JK Nat Biotechnol; 2020 Jul; 38(7):861-864. PubMed ID: 32483364 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674 [TBL] [Abstract][Full Text] [Related]
6. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Zhou C; Sun Y; Yan R; Liu Y; Zuo E; Gu C; Han L; Wei Y; Hu X; Zeng R; Li Y; Zhou H; Guo F; Yang H Nature; 2019 Jul; 571(7764):275-278. PubMed ID: 31181567 [TBL] [Abstract][Full Text] [Related]
7. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Sakata RC; Ishiguro S; Mori H; Tanaka M; Tatsuno K; Ueda H; Yamamoto S; Seki M; Masuyama N; Nishida K; Nishimasu H; Arakawa K; Kondo A; Nureki O; Tomita M; Aburatani H; Yachie N Nat Biotechnol; 2020 Jul; 38(7):865-869. PubMed ID: 32483365 [TBL] [Abstract][Full Text] [Related]
8. Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant. Tran MTN; Khalid MKNM; Pébay A; Cook AL; Liang HH; Wong RCB; Craig JE; Liu GS; Hung SS; Hewitt AW Mol Vis; 2019; 25():174-182. PubMed ID: 30996586 [TBL] [Abstract][Full Text] [Related]
9. Engineering of cytosine base editors with DNA damage minimization and editing scope diversification. Yuan B; Zhang S; Song L; Chen J; Cao J; Qiu J; Qiu Z; Chen J; Zhao XM; Cheng TL Nucleic Acids Res; 2023 Nov; 51(20):e105. PubMed ID: 37843111 [TBL] [Abstract][Full Text] [Related]
10. Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice. Yan N; Feng H; Sun Y; Xin Y; Zhang H; Lu H; Zheng J; He C; Zuo Z; Yuan T; Li N; Xie L; Wei W; Sun Y; Zuo E Nat Commun; 2023 Mar; 14(1):1784. PubMed ID: 36997536 [TBL] [Abstract][Full Text] [Related]
11. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Lei Z; Meng H; Lv Z; Liu M; Zhao H; Wu H; Zhang X; Liu L; Zhuang Y; Yin K; Yan Y; Yi C Nat Methods; 2021 Jun; 18(6):643-651. PubMed ID: 34099937 [TBL] [Abstract][Full Text] [Related]
12. Current Status and Challenges of DNA Base Editing Tools. Jeong YK; Song B; Bae S Mol Ther; 2020 Sep; 28(9):1938-1952. PubMed ID: 32763143 [TBL] [Abstract][Full Text] [Related]
13. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Gehrke JM; Cervantes O; Clement MK; Wu Y; Zeng J; Bauer DE; Pinello L; Joung JK Nat Biotechnol; 2018 Nov; 36(10):977-982. PubMed ID: 30059493 [TBL] [Abstract][Full Text] [Related]
14. Targeting fidelity of adenine and cytosine base editors in mouse embryos. Lee HK; Willi M; Miller SM; Kim S; Liu C; Liu DR; Hennighausen L Nat Commun; 2018 Nov; 9(1):4804. PubMed ID: 30442934 [TBL] [Abstract][Full Text] [Related]
15. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971 [TBL] [Abstract][Full Text] [Related]
16. BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors. Tálas A; Simon DA; Kulcsár PI; Varga É; Krausz SL; Welker E Nat Commun; 2021 Nov; 12(1):6353. PubMed ID: 34732717 [TBL] [Abstract][Full Text] [Related]
17. Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity. Jin S; Fei H; Zhu Z; Luo Y; Liu J; Gao S; Zhang F; Chen YH; Wang Y; Gao C Mol Cell; 2020 Sep; 79(5):728-740.e6. PubMed ID: 32721385 [TBL] [Abstract][Full Text] [Related]
18. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Zhang X; Zhu B; Chen L; Xie L; Yu W; Wang Y; Li L; Yin S; Yang L; Hu H; Han H; Li Y; Wang L; Chen G; Ma X; Geng H; Huang W; Pang X; Yang Z; Wu Y; Siwko S; Kurita R; Nakamura Y; Yang L; Liu M; Li D Nat Biotechnol; 2020 Jul; 38(7):856-860. PubMed ID: 32483363 [TBL] [Abstract][Full Text] [Related]
19. Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE. Zhou J; Liu Y; Wei Y; Zheng S; Gou S; Chen T; Yang Y; Lan T; Chen M; Liao Y; Zhang Q; Tang C; Liu Y; Wu Y; Peng X; Gao M; Wang J; Zhang K; Lai L; Zou Q Mol Ther; 2022 Jul; 30(7):2443-2451. PubMed ID: 35443934 [TBL] [Abstract][Full Text] [Related]
20. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Grünewald J; Zhou R; Iyer S; Lareau CA; Garcia SP; Aryee MJ; Joung JK Nat Biotechnol; 2019 Sep; 37(9):1041-1048. PubMed ID: 31477922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]