BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32424393)

  • 1. Modeling and measurement of signaling outcomes affecting decision making in noisy intracellular networks using machine learning methods.
    Ozen M; Lipniacki T; Levchenko A; Emamian ES; Abdi A
    Integr Biol (Camb); 2020 May; 12(5):122-138. PubMed ID: 32424393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation and measurement of cell decision making errors using single cell data.
    Habibi I; Cheong R; Lipniacki T; Levchenko A; Emamian ES; Abdi A
    PLoS Comput Biol; 2017 Apr; 13(4):e1005436. PubMed ID: 28379950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules.
    Emadi A; Lipniacki T; Levchenko A; Abdi A
    Biology (Basel); 2023 Nov; 12(12):. PubMed ID: 38132287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical aspects and modelling of cellular decision making, cell killing and information-processing in photodynamic therapy of cancer.
    Gkigkitzis I
    BMC Med Genomics; 2013; 6 Suppl 3(Suppl 3):S3. PubMed ID: 24565264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning to refine decision making within a syndromic surveillance service.
    Lake IR; Colón-González FJ; Barker GC; Morbey RA; Smith GE; Elliot AJ
    BMC Public Health; 2019 May; 19(1):559. PubMed ID: 31088446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning to predict 30-day quality-adjusted survival in critically ill patients with cancer.
    Santos HGD; Zampieri FG; Normilio-Silva K; Silva GTD; Lima ACP; Cavalcanti AB; Chiavegatto Filho ADP
    J Crit Care; 2020 Feb; 55():73-78. PubMed ID: 31715534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal detection theory and reconstruction algorithms--performance for images in noise.
    Jalihal D; Nolte LW
    IEEE Trans Biomed Eng; 1994 May; 41(5):501-4. PubMed ID: 8070811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y
    Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergency department triage prediction of clinical outcomes using machine learning models.
    Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K
    Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NICeSim: an open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making.
    Cerqueira FR; Ferreira TG; de Paiva Oliveira A; Augusto DA; Krempser E; Corrêa Barbosa HJ; do Carmo Castro Franceschini S; de Freitas BA; Gomes AP; Siqueira-Batista R
    Artif Intell Med; 2014 Nov; 62(3):193-201. PubMed ID: 25457563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell approaches to cell competition: High-throughput imaging, machine learning and simulations.
    Gradeci D; Bove A; Charras G; Lowe AR; Banerjee S
    Semin Cancer Biol; 2020 Jun; 63():60-68. PubMed ID: 31108201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining decision thresholds and evaluating indicators when conservation status is measured as a continuum.
    Connors BM; Cooper AB
    Conserv Biol; 2014 Dec; 28(6):1626-35. PubMed ID: 25155174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of clinical prognostic variables for Chronic Lymphocytic Leukemia decision-making problems.
    deAndrés-Galiana EJ; Fernández-Martínez JL; Luaces O; Del Coz JJ; Huergo-Zapico L; Acebes-Huerta A; González S; González-Rodríguez AP
    J Biomed Inform; 2016 Apr; 60():342-51. PubMed ID: 26956213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk management frameworks for human health and environmental risks.
    Jardine C; Hrudey S; Shortreed J; Craig L; Krewski D; Furgal C; McColl S
    J Toxicol Environ Health B Crit Rev; 2003; 6(6):569-720. PubMed ID: 14698953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receiver operating characteristic curves and confidence bands for support vector machines.
    Luckett DJ; Laber EB; El-Kamary SS; Fan C; Jhaveri R; Perou CM; Shebl FM; Kosorok MR
    Biometrics; 2021 Dec; 77(4):1422-1430. PubMed ID: 32865820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning approach to predict early outcomes after pituitary adenoma surgery.
    Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE
    Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decision theoretic analysis of improving epidemic detection.
    Izadi MT; Buckeridge DL
    AMIA Annu Symp Proc; 2007 Oct; 2007():354-8. PubMed ID: 18693857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape and flux quantify the stochastic transition dynamics for p53 cell fate decision.
    Ye L; Song Z; Li C
    J Chem Phys; 2021 Jan; 154(2):025101. PubMed ID: 33445890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning to support social media empowered patients in cancer care and cancer treatment decisions.
    De Silva D; Ranasinghe W; Bandaragoda T; Adikari A; Mills N; Iddamalgoda L; Alahakoon D; Lawrentschuk N; Persad R; Osipov E; Gray R; Bolton D
    PLoS One; 2018; 13(10):e0205855. PubMed ID: 30335805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.