BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 32424440)

  • 1. Tetraspanins in mammalian reproduction: spermatozoa, oocytes and embryos.
    Jankovičová J; Neuerová Z; Sečová P; Bartóková M; Bubeníčková F; Komrsková K; Postlerová P; Antalíková J
    Med Microbiol Immunol; 2020 Aug; 209(4):407-425. PubMed ID: 32424440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of tetraspanins in bovine ovarian tissue and fresh/vitrified oocytes.
    Jankovičová J; Sečová P; Horovská Ľ; Olexiková L; Dujíčková L; Makarevich AV; Michalková K; Antalíková J
    Histochem Cell Biol; 2023 Feb; 159(2):163-183. PubMed ID: 36242635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of CD9 and CD81 tetraspanins in bovine and porcine oocytes and embryos.
    Jankovicova J; Secova P; Manaskova-Postlerova P; Simonik O; Frolikova M; Chmelikova E; Horovska L; Michalkova K; Dvorakova-Hortova K; Antalikova J
    Int J Biol Macromol; 2019 Feb; 123():931-938. PubMed ID: 30452988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of tetraspanin CD9 molecule in fertilization of mammals.
    Jankovičová J; Simon M; Antalíková J; Cupperová P; Michalková K
    Physiol Res; 2015; 64(3):279-93. PubMed ID: 25536312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane transfer from oocyte to sperm occurs in two CD9-independent ways that do not supply the fertilising ability of Cd9-deleted oocytes.
    Barraud-Lange V; Chalas Boissonnas C; Serres C; Auer J; Schmitt A; Lefèvre B; Wolf JP; Ziyyat A
    Reproduction; 2012 Jul; 144(1):53-66. PubMed ID: 22554680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of Complement Regulatory Protein Tetraspanins in the Male Reproductive System and Fertilization.
    Jangid P; Rai U; Bakshi A; Singh R
    Curr Protein Pept Sci; 2023; 24(3):240-246. PubMed ID: 36718968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells.
    Parthasarathy V; Martin F; Higginbottom A; Murray H; Moseley GW; Read RC; Mal G; Hulme R; Monk PN; Partridge LJ
    Immunology; 2009 Jun; 127(2):237-48. PubMed ID: 19489128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion.
    Ziyyat A; Rubinstein E; Monier-Gavelle F; Barraud V; Kulski O; Prenant M; Boucheix C; Bomsel M; Wolf JP
    J Cell Sci; 2006 Feb; 119(Pt 3):416-24. PubMed ID: 16418227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetraspanins are involved in Burkholderia pseudomallei-induced cell-to-cell fusion of phagocytic and non-phagocytic cells.
    Sangsri T; Saiprom N; Tubsuwan A; Monk P; Partridge LJ; Chantratita N
    Sci Rep; 2020 Oct; 10(1):17972. PubMed ID: 33087788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction.
    Jankovičová J; Sečová P; Michalková K; Antalíková J
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles.
    Fan Y; Pionneau C; Cocozza F; Boëlle PY; Chardonnet S; Charrin S; Théry C; Zimmermann P; Rubinstein E
    J Extracell Vesicles; 2023 Aug; 12(8):e12352. PubMed ID: 37525398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exosomes versus microexosomes: Shared components but distinct functions.
    Miyado K; Kang W; Yamatoya K; Hanai M; Nakamura A; Mori T; Miyado M; Kawano N
    J Plant Res; 2017 May; 130(3):479-483. PubMed ID: 28160150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of exosomal tetraspanins and proteases in tumor progression].
    Yunusova NV; Tugutova EA; Tamkovich SN; Kondakova IV
    Biomed Khim; 2018 Mar; 64(2):123-133. PubMed ID: 29723143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced fertility of female mice lacking CD81.
    Rubinstein E; Ziyyat A; Prenant M; Wrobel E; Wolf JP; Levy S; Le Naour F; Boucheix C
    Dev Biol; 2006 Feb; 290(2):351-8. PubMed ID: 16380109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetraspanins are involved in Schwann cell-axon interaction.
    Chernousov MA; Stahl RC; Carey DJ
    J Neurosci Res; 2013 Nov; 91(11):1419-28. PubMed ID: 24038174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD81 and CD9 work independently as extracellular components upon fusion of sperm and oocyte.
    Ohnami N; Nakamura A; Miyado M; Sato M; Kawano N; Yoshida K; Harada Y; Takezawa Y; Kanai S; Ono C; Takahashi Y; Kimura K; Shida T; Miyado K; Umezawa A
    Biol Open; 2012 Jul; 1(7):640-7. PubMed ID: 23213457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis.
    Berditchevski F; Gilbert E; Griffiths MR; Fitter S; Ashman L; Jenner SJ
    J Biol Chem; 2001 Nov; 276(44):41165-74. PubMed ID: 11479292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The specificity of homomeric clustering of CD81 is mediated by its δ-loop.
    Homsi Y; Lang T
    FEBS Open Bio; 2017 Feb; 7(2):274-283. PubMed ID: 28174692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tetraspanin D6.1A and its molecular partners on rat carcinoma cells.
    Claas C; Wahl J; Orlicky DJ; Karaduman H; Schnölzer M; Kempf T; Zöller M
    Biochem J; 2005 Jul; 389(Pt 1):99-110. PubMed ID: 15725074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection.
    Tippett E; Cameron PU; Marsh M; Crowe SM
    J Leukoc Biol; 2013 Jun; 93(6):913-20. PubMed ID: 23570947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.