BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 32424748)

  • 1. Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method.
    Rashedi A; Khanam T
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29075-29090. PubMed ID: 32424748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of photovoltaic electricity production by mono-crystalline solar systems: a case study in Canada.
    Alam E; Xu X
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27422-27440. PubMed ID: 36383321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels.
    Maani T; Celik I; Heben MJ; Ellingson RJ; Apul D
    Sci Total Environ; 2020 Sep; 735():138827. PubMed ID: 32464407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Method of Sensitivity Analysis Improves the Prioritization of Research in Anticipatory Life Cycle Assessment of Emerging Technologies.
    Ravikumar D; Seager TP; Cucurachi S; Prado V; Mutel C
    Environ Sci Technol; 2018 Jun; 52(11):6534-6543. PubMed ID: 29734807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emissions from photovoltaic life cycles.
    Fthenakis VM; Kim HC; Alsema E
    Environ Sci Technol; 2008 Mar; 42(6):2168-74. PubMed ID: 18409654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent versus thermal treatment for glass recovery from end of life photovoltaic panels: Environmental and economic assessment.
    Pagnanelli F; Moscardini E; Altimari P; Padoan FCSM; Abo Atia T; Beolchini F; Amato A; Toro L
    J Environ Manage; 2019 Oct; 248():109313. PubMed ID: 31374434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building-Integrated Photovoltaic/Thermal (BIPVT): LCA of a façade-integrated prototype and issues about human health, ecosystems, resources.
    Lamnatou C; Smyth M; Chemisana D
    Sci Total Environ; 2019 Apr; 660():1576-1592. PubMed ID: 30743949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the Impact of Fine Particulate Matter on Solar Energy Resources and Energy Performance of Different Photovoltaic Technologies.
    Song Z; Wang M; Yang H
    ACS Environ Au; 2022 May; 2(3):275-286. PubMed ID: 37102140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin-film photovoltaic power generation offers decreasing greenhouse gas emissions and increasing environmental co-benefits in the long term.
    Bergesen JD; Heath GA; Gibon T; Suh S
    Environ Sci Technol; 2014 Aug; 48(16):9834-43. PubMed ID: 24984196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.
    Celik I; Mason BE; Phillips AB; Heben MJ; Apul D
    Environ Sci Technol; 2017 Apr; 51(8):4722-4732. PubMed ID: 28234471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impacts of copper‑indium‑gallium-selenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition.
    Stamford L; Azapagic A
    Sci Total Environ; 2019 Oct; 688():1092-1101. PubMed ID: 31726540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental comparison of alternative treatments for sewage sludge: An Italian case study.
    Lombardi L; Nocita C; Bettazzi E; Fibbi D; Carnevale E
    Waste Manag; 2017 Nov; 69():365-376. PubMed ID: 28865907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards sustainable photovoltaics: the search for new materials.
    Peter LM
    Philos Trans A Math Phys Eng Sci; 2011 May; 369(1942):1840-56. PubMed ID: 21464075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of global status and challenges for end-of-life crystalline silicon photovoltaic panels: A focus on environmental impacts.
    Seo B; Kim JY; Chung J
    Waste Manag; 2021 Jun; 128():45-54. PubMed ID: 33965672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upgraded metallurgical grade silicon and polysilicon for solar electricity production: A comparative life cycle assessment.
    Méndez L; Forniés E; Garrain D; Pérez Vázquez A; Souto A; Vlasenko T
    Sci Total Environ; 2021 Oct; 789():147969. PubMed ID: 34082204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decentralized energy in flexible energy system: Life cycle environmental impacts in Belgium.
    Huber D; Costa D; Felice A; Valkering P; Coosemans T; Messagie M
    Sci Total Environ; 2023 Aug; 886():163882. PubMed ID: 37160185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life cycle assessment of rice production systems in different paddy field size levels in north of Iran.
    Habibi E; Niknejad Y; Fallah H; Dastan S; Tari DB
    Environ Monit Assess; 2019 Mar; 191(4):202. PubMed ID: 30826990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analogical environmental cost assessment of silicon flows used in solar panels by the US and China.
    Golroudbary SR; Lundström M; Wilson BP
    Sci Rep; 2024 Apr; 14(1):9538. PubMed ID: 38664519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Chalcogenide Thin Films for Solar Energy Harvesting Devices.
    Hadke S; Huang M; Chen C; Tay YF; Chen S; Tang J; Wong L
    Chem Rev; 2022 Jun; 122(11):10170-10265. PubMed ID: 34878268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.