These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 32424751)
1. Promoting artificial recharge to enhance groundwater potential in the lower Bhavani River basin of South India using geospatial techniques. Anand B; Karunanidhi D; Subramani T Environ Sci Pollut Res Int; 2021 Apr; 28(15):18437-18456. PubMed ID: 32424751 [TBL] [Abstract][Full Text] [Related]
2. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Shekar PR; Mathew A Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701 [TBL] [Abstract][Full Text] [Related]
3. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab. Singh A; Panda SN; Kumar KS; Sharma CS Environ Manage; 2013 Jul; 52(1):61-71. PubMed ID: 23775493 [TBL] [Abstract][Full Text] [Related]
4. Delineation of suitable sites for groundwater recharge based on groundwater potential with RS, GIS, and AHP approach for Mand catchment of Mahanadi Basin. Baghel S; Tripathi MP; Khalkho D; Al-Ansari N; Kumar A; Elbeltagi A Sci Rep; 2023 Jun; 13(1):9860. PubMed ID: 37331976 [TBL] [Abstract][Full Text] [Related]
5. Planning rainwater conservation measures using geospatial and multi-criteria decision making tools. Singh LK; Jha MK; Chowdary VM Environ Sci Pollut Res Int; 2021 Jan; 28(2):1734-1751. PubMed ID: 32852715 [TBL] [Abstract][Full Text] [Related]
6. Geospatial application on mapping groundwater recharge zones in Makutupora basin, Tanzania. Kisiki CP; Bekele TW; Ayenew T; Mjemah IC Heliyon; 2022 Oct; 8(10):e10760. PubMed ID: 36211994 [TBL] [Abstract][Full Text] [Related]
7. Data on artificial recharge sites identified by geospatial tools in semi-arid region of Anantapur District, Andhra Pradesh, India. Rajasekhar M; Sudarsana Raju G; Siddi Raju R; Imran Basha U Data Brief; 2018 Aug; 19():462-474. PubMed ID: 29900343 [TBL] [Abstract][Full Text] [Related]
8. Mapping potential groundwater accumulation zones for Karachi city using GIS and AHP techniques. Ahmad I; Hasan H; Jilani MM; Ahmed SI Environ Monit Assess; 2023 Feb; 195(3):381. PubMed ID: 36757435 [TBL] [Abstract][Full Text] [Related]
9. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques. Thilagavathi N; Subramani T; Suresh M; Karunanidhi D Environ Monit Assess; 2015 Apr; 187(4):164. PubMed ID: 25740689 [TBL] [Abstract][Full Text] [Related]
10. Developing quantifiable approaches for delineating suitable options for irrigating fallow areas during dry season-a case study from Eastern India. Behera MD; Biradar C; Das P; Chowdary VM Environ Monit Assess; 2020 Jan; 191(Suppl 3):805. PubMed ID: 31989341 [TBL] [Abstract][Full Text] [Related]
11. Determination of potential recharge zones and its validation against groundwater quality parameters through the application of GIS and remote sensing techniques in uMhlathuze catchment, KwaZulu-Natal, South Africa. Ponnusamy D; Elumalai V Chemosphere; 2022 Nov; 307(Pt 4):136121. PubMed ID: 35995193 [TBL] [Abstract][Full Text] [Related]
12. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Moharir KN; Pande CB; Gautam VK; Singh SK; Rane NL Environ Res; 2023 Jul; 228():115832. PubMed ID: 37054834 [TBL] [Abstract][Full Text] [Related]
13. Identification of suitable zones and sites for rainwater harvesting using GIS and multicriteria decision analysis. Waghaye AM; Singh DK; Sarangi A; Sena DR; Sahoo RN; Sarkar SK Environ Monit Assess; 2023 Jan; 195(2):279. PubMed ID: 36609939 [TBL] [Abstract][Full Text] [Related]
14. Computation of groundwater resources and recharge in Chithar River Basin, South India. Subramani T; Babu S; Elango L Environ Monit Assess; 2013 Jan; 185(1):983-94. PubMed ID: 22961326 [TBL] [Abstract][Full Text] [Related]
15. Identification and mapping of groundwater recharge zones using multi influencing factor and analytical hierarchy process. Meng F; Khan MI; Naqvi SAA; Sarwar A; Islam F; Ali M; Tariq A; Ullah S; Soufan W; Faraj TK Sci Rep; 2024 Aug; 14(1):19240. PubMed ID: 39164369 [TBL] [Abstract][Full Text] [Related]
16. Assessment of groundwater recharge potential in a typical geological transition zone in Bauchi, NE-Nigeria using remote sensing/GIS and MCDA approaches. Abdullateef L; Tijani MN; Nuru NA; John S; Mustapha A Heliyon; 2021 Apr; 7(4):e06762. PubMed ID: 33997372 [TBL] [Abstract][Full Text] [Related]
17. Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Bera A; Mukhopadhyay BP; Das S Chemosphere; 2022 Nov; 307(Pt 2):135831. PubMed ID: 35944685 [TBL] [Abstract][Full Text] [Related]
18. GIS-based multi-criteria decision-making techniques and analytical hierarchical process for delineation of groundwater potential. Farhat B; Souissi D; Mahfoudhi R; Chrigui R; Sebei A; Ben Mammou A Environ Monit Assess; 2023 Jan; 195(2):285. PubMed ID: 36625986 [TBL] [Abstract][Full Text] [Related]
19. Delineation of groundwater potential zones at micro-spatial units of Nagaon district in Assam, India, using GIS-based MCDA and AHP techniques. Bhuyan MJ; Deka N Environ Sci Pollut Res Int; 2024 Sep; 31(41):54107-54128. PubMed ID: 36504300 [TBL] [Abstract][Full Text] [Related]
20. A geospatial approach for assessing urban flood risk zones in Chennai, Tamil Nadu, India. Bagyaraj M; Senapathi V; Chung SY; Gopalakrishnan G; Xiao Y; Karthikeyan S; Nadiri AA; Barzegar R Environ Sci Pollut Res Int; 2023 Sep; 30(45):100562-100575. PubMed ID: 37639084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]