These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 32424992)

  • 21. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function.
    Qin Q; Huang AJ; Hua J; Desmond JE; Stevens RD; van Zijl PC
    NMR Biomed; 2014 Feb; 27(2):116-28. PubMed ID: 24307572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-TI Arterial Spin Labeling MRI with Variable TR and Bolus Duration for Cerebral Blood Flow and Arterial Transit Time Mapping.
    Johnston ME; Lu K; Maldjian JA; Jung Y
    IEEE Trans Med Imaging; 2015 Jun; 34(6):1392-402. PubMed ID: 25616010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing and comparing optimized pseudo-continuous Arterial Spin Labeling protocols for measurement of cerebral blood flow.
    Woods JG; Chappell MA; Okell TW
    Neuroimage; 2020 Dec; 223():117246. PubMed ID: 32853814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Utility of Arterial Transit Time Measurement for Evaluating the Hemodynamic Perfusion State of Patients with Chronic Cerebrovascular Stenosis or Occlusive Disease: Correlative Study between MR Imaging and
    Takeuchi K; Isozaki M; Higashino Y; Kosaka N; Kikuta KI; Ishida S; Kanamoto M; Takei N; Okazawa H; Kimura H
    Magn Reson Med Sci; 2023 Jul; 22(3):289-300. PubMed ID: 35545508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-efficient determination of spin compartments by time-encoded pCASL T2-relaxation-under-spin-tagging and its application in hemodynamic characterization of the cerebral border zones.
    Schmid S; Teeuwisse WM; Lu H; van Osch MJ
    Neuroimage; 2015 Dec; 123():72-9. PubMed ID: 26297847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A general framework for optimizing arterial spin labeling MRI experiments.
    Woods JG; Chappell MA; Okell TW
    Magn Reson Med; 2019 Apr; 81(4):2474-2488. PubMed ID: 30588656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-efficient measurement of multi-phase arterial spin labeling MR signal in white matter.
    Zhang X; Ronen I; Kan HE; Teeuwisse WM; van Osch MJ
    NMR Biomed; 2016 Nov; 29(11):1519-1525. PubMed ID: 27594277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cerebral blood flow quantification in swine using pseudo-continuous arterial spin labeling.
    Johnston ME; Zheng Z; Maldjian JA; Whitlow CT; Morykwas MJ; Jung Y
    J Magn Reson Imaging; 2013 Nov; 38(5):1111-8. PubMed ID: 24105693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo Hadamard encoded continuous arterial spin labeling (H-CASL).
    Wells JA; Lythgoe MF; Gadian DG; Ordidge RJ; Thomas DL
    Magn Reson Med; 2010 Apr; 63(4):1111-8. PubMed ID: 20373414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diagnostic Accuracy of Screening Arterial Spin-Labeling MRI Using Hadamard Encoding for the Detection of Reduced CBF in Adult Patients with Ischemic Moyamoya Disease.
    Setta K; Matsuda T; Sasaki M; Chiba T; Fujiwara S; Kobayashi M; Yoshida K; Kubo Y; Suzuki M; Yoshioka K; Ogasawara K
    AJNR Am J Neuroradiol; 2021 Aug; 42(8):1403-1409. PubMed ID: 34016589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the Human Connectome Project-Aging.
    Juttukonda MR; Li B; Almaktoum R; Stephens KA; Yochim KM; Yacoub E; Buckner RL; Salat DH
    Neuroimage; 2021 Apr; 230():117807. PubMed ID: 33524575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of CBF Measured with Combined Velocity-Selective Arterial Spin-Labeling and Pulsed Arterial Spin-Labeling to Blood Flow Patterns Assessed by Conventional Angiography in Pediatric Moyamoya.
    Bolar DS; Gagoski B; Orbach DB; Smith E; Adalsteinsson E; Rosen BR; Grant PE; Robertson RL
    AJNR Am J Neuroradiol; 2019 Nov; 40(11):1842-1849. PubMed ID: 31694821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The spatial coefficient of variation in arterial spin labeling cerebral blood flow images.
    Mutsaerts HJ; Petr J; Václavů L; van Dalen JW; Robertson AD; Caan MW; Masellis M; Nederveen AJ; Richard E; MacIntosh BJ
    J Cereb Blood Flow Metab; 2017 Sep; 37(9):3184-3192. PubMed ID: 28058975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examination of optimized protocols for pCASL: Sensitivity to macrovascular contamination, flow dispersion, and prolonged arterial transit time.
    Zhang LX; Woods JG; Okell TW; Chappell MA
    Magn Reson Med; 2021 Oct; 86(4):2208-2219. PubMed ID: 34009682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can combined high-resolution vessel wall imaging and multiple post-labeling delay 3D pseudo-continuous arterial spin labeling differentiate moyamoya disease from atherosclerotic moyamoya syndrome?
    Guo Y; Dou W; Wang X; Wang X; Mao H; Chen K
    Eur J Radiol; 2023 Dec; 169():111184. PubMed ID: 37931375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subject-specific timing adaption in time-encoded arterial spin labeling imaging.
    Breutigam NJ; Hoinkiss DC; Konstandin S; Buck MA; Mahroo A; Eickel K; von Samson-Himmelstjerna F; Günther M
    MAGMA; 2024 Feb; 37(1):53-68. PubMed ID: 37768433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parametric cerebral blood flow and arterial transit time mapping using a 3D convolutional neural network.
    Kim D; Lipford ME; He H; Ding Q; Ivanovic V; Lockhart SN; Craft S; Whitlow CT; Jung Y
    Magn Reson Med; 2023 Aug; 90(2):583-595. PubMed ID: 37092852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arterial Transit Time Mapping Obtained by Pulsed Continuous 3D ASL Imaging with Multiple Post-Label Delay Acquisitions: Comparative Study with PET-CBF in Patients with Chronic Occlusive Cerebrovascular Disease.
    Tsujikawa T; Kimura H; Matsuda T; Fujiwara Y; Isozaki M; Kikuta K; Okazawa H
    PLoS One; 2016; 11(6):e0156005. PubMed ID: 27275779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF.
    Qiu D; Straka M; Zun Z; Bammer R; Moseley ME; Zaharchuk G
    J Magn Reson Imaging; 2012 Jul; 36(1):110-9. PubMed ID: 22359345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of the Training Data Condition on Arterial Spin Labeling Parameter Estimation Using a Simulation-Based Supervised Deep Neural Network.
    Ishida S; Isozaki M; Fujiwara Y; Takei N; Kanamoto M; Kimura H; Tsujikawa T
    J Comput Assist Tomogr; 2024 May-Jun 01; 48(3):459-471. PubMed ID: 38149628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.