BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32425044)

  • 21. Antifreeze protein-induced morphological modification mechanisms linked to ice binding surface.
    Strom CS; Liu XY; Jia Z
    J Biol Chem; 2004 Jul; 279(31):32407-17. PubMed ID: 15140895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of the Ice-Binding Site of an Insect Antifreeze Protein Using Sum-Frequency Generation Spectroscopy.
    Meister K; Lotze S; Olijve LL; DeVries AL; Duman JG; Voets IK; Bakker HJ
    J Phys Chem Lett; 2015 Apr; 6(7):1162-7. PubMed ID: 26262966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm.
    Yang DS; Hon WC; Bubanko S; Xue Y; Seetharaman J; Hew CL; Sicheri F
    Biophys J; 1998 May; 74(5):2142-51. PubMed ID: 9591641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Janus effect of antifreeze proteins on ice nucleation.
    Liu K; Wang C; Ma J; Shi G; Yao X; Fang H; Song Y; Wang J
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14739-14744. PubMed ID: 27930318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High water mobility on the ice-binding surface of a hyperactive antifreeze protein.
    Modig K; Qvist J; Marshall CB; Davies PL; Halle B
    Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ice-binding site of antifreeze protein irreversibly binds to cell surface for its hypothermic protective function.
    Yang Y; Yamauchi A; Tsuda S; Kuramochi M; Mio K; Sasaki YC; Arai T
    Biochem Biophys Res Commun; 2023 Nov; 682():343-348. PubMed ID: 37837755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperactive Antifreeze Proteins Promote Ice Growth before Binding to It.
    Cui S; Zhang W; Shao X; Cai W
    J Chem Inf Model; 2022 Nov; 62(21):5165-5174. PubMed ID: 34711054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth.
    Celik Y; Drori R; Pertaya-Braun N; Altan A; Barton T; Bar-Dolev M; Groisman A; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1309-14. PubMed ID: 23300286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein engineering of antifreeze proteins reveals that their activity scales with the area of the ice-binding site.
    Scholl CL; Davies PL
    FEBS Lett; 2023 Feb; 597(4):538-546. PubMed ID: 36460826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ice-Nucleating and Antifreeze Proteins Recognize Ice through a Diversity of Anchored Clathrate and Ice-like Motifs.
    Hudait A; Odendahl N; Qiu Y; Paesani F; Molinero V
    J Am Chem Soc; 2018 Apr; 140(14):4905-4912. PubMed ID: 29564892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface.
    Howard EI; Blakeley MP; Haertlein M; Petit-Haertlein I; Mitschler A; Fisher SJ; Cousido-Siah A; Salvay AG; Popov A; Muller-Dieckmann C; Petrova T; Podjarny A
    J Mol Recognit; 2011; 24(4):724-32. PubMed ID: 21472814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Insight into the Adsorption of Spruce Budworm Antifreeze Protein to an Ice Surface: A Clathrate-Mediated Recognition Mechanism.
    Chakraborty S; Jana B
    Langmuir; 2017 Jul; 33(28):7202-7214. PubMed ID: 28650167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant.
    Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN
    Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.