BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32425044)

  • 41. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.
    Strom CS; Liu XY; Jia Z
    J Am Chem Soc; 2005 Jan; 127(1):428-40. PubMed ID: 15631494
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition.
    Mao Y; Ba Y
    J Chem Phys; 2006 Sep; 125(9):091102. PubMed ID: 16965064
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?
    Strom CS; Liu XY; Jia Z
    Biophys J; 2005 Oct; 89(4):2618-27. PubMed ID: 16055536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fish-Derived Antifreeze Proteins and Antifreeze Glycoprotein Exhibit a Different Ice-Binding Property with Increasing Concentration.
    Tsuda S; Yamauchi A; Khan NMU; Arai T; Mahatabuddin S; Miura A; Kondo H
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32182859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin.
    Duboué-Dijon E; Laage D
    J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engulfment Avalanches and Thermal Hysteresis for Antifreeze Proteins on Supercooled Ice.
    Farag H; Peters B
    J Phys Chem B; 2023 Jun; 127(24):5422-5431. PubMed ID: 37294871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium ion implicitly modulates the adsorption ability of ion-dependent type II antifreeze proteins on an ice/water interface: a structural insight.
    Chakraborty S; Jana B
    Metallomics; 2019 Aug; 11(8):1387-1400. PubMed ID: 31267120
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions.
    Doxey AC; Yaish MW; Griffith M; McConkey BJ
    Nat Biotechnol; 2006 Jul; 24(7):852-5. PubMed ID: 16823370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y; Graham LA; Mok YF; Bar M; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5423-8. PubMed ID: 20215465
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus.
    Cheng J; Hanada Y; Miura A; Tsuda S; Kondo H
    Biochem J; 2016 Nov; 473(21):4011-4026. PubMed ID: 27613857
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.
    Olijve LL; Meister K; DeVries AL; Duman JG; Guo S; Bakker HJ; Voets IK
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3740-5. PubMed ID: 26936953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multivalent Display of Antifreeze Proteins by Fusion to Self-Assembling Protein Cages Enhances Ice-Binding Activities.
    Phippen SW; Stevens CA; Vance TD; King NP; Baker D; Davies PL
    Biochemistry; 2016 Dec; 55(49):6811-6820. PubMed ID: 27951652
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New insights into ice growth and melting modifications by antifreeze proteins.
    Bar-Dolev M; Celik Y; Wettlaufer JS; Davies PL; Braslavsky I
    J R Soc Interface; 2012 Dec; 9(77):3249-59. PubMed ID: 22787007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.