These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32425607)
1. Deep Learning in CT Images: Automated Pulmonary Nodule Detection for Subsequent Management Using Convolutional Neural Network. Xu YM; Zhang T; Xu H; Qi L; Zhang W; Zhang YD; Gao DS; Yuan M; Yu TF Cancer Manag Res; 2020; 12():2979-2992. PubMed ID: 32425607 [TBL] [Abstract][Full Text] [Related]
2. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
3. Automatic detection of pulmonary nodules on CT images with YOLOv3: development and evaluation using simulated and patient data. Liu C; Hu SC; Wang C; Lafata K; Yin FF Quant Imaging Med Surg; 2020 Oct; 10(10):1917-1929. PubMed ID: 33014725 [TBL] [Abstract][Full Text] [Related]
4. Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: analysis of an observer performance study by nodule size. Sahiner B; Chan HP; Hadjiiski LM; Cascade PN; Kazerooni EA; Chughtai AR; Poopat C; Song T; Frank L; Stojanovska J; Attili A Acad Radiol; 2009 Dec; 16(12):1518-30. PubMed ID: 19896069 [TBL] [Abstract][Full Text] [Related]
5. The effect of pulmonary vessel suppression on computerized detection of nodules in chest CT scans. Gu X; Xie W; Fang Q; Zhao J; Li Q Med Phys; 2020 Oct; 47(10):4917-4927. PubMed ID: 32681587 [TBL] [Abstract][Full Text] [Related]
6. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Gu Y; Lu X; Yang L; Zhang B; Yu D; Zhao Y; Gao L; Wu L; Zhou T Comput Biol Med; 2018 Dec; 103():220-231. PubMed ID: 30390571 [TBL] [Abstract][Full Text] [Related]
7. Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population. Murchison JT; Ritchie G; Senyszak D; Nijwening JH; van Veenendaal G; Wakkie J; van Beek EJR PLoS One; 2022; 17(5):e0266799. PubMed ID: 35511758 [TBL] [Abstract][Full Text] [Related]
8. Appraisal of Deep-Learning Techniques on Computer-Aided Lung Cancer Diagnosis with Computed Tomography Screening. Agnes SA; Anitha J J Med Phys; 2020; 45(2):98-106. PubMed ID: 32831492 [TBL] [Abstract][Full Text] [Related]
9. Application value of a computer-aided diagnosis and management system for the detection of lung nodules. Chen J; Cao R; Jiao S; Dong Y; Wang Z; Zhu H; Luo Q; Zhang L; Wang H; Yin X Quant Imaging Med Surg; 2023 Oct; 13(10):6929-6941. PubMed ID: 37869302 [TBL] [Abstract][Full Text] [Related]
10. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography. Chen H; Wang XH; Ma DQ; Ma BR Chin Med J (Engl); 2007 Jul; 120(14):1211-5. PubMed ID: 17697569 [TBL] [Abstract][Full Text] [Related]
11. Performance of a deep learning-based lung nodule detection system as an alternative reader in a Chinese lung cancer screening program. Cui X; Zheng S; Heuvelmans MA; Du Y; Sidorenkov G; Fan S; Li Y; Xie Y; Zhu Z; Dorrius MD; Zhao Y; Veldhuis RNJ; de Bock GH; Oudkerk M; van Ooijen PMA; Vliegenthart R; Ye Z Eur J Radiol; 2022 Jan; 146():110068. PubMed ID: 34871936 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of Benign from Malignant Pulmonary Nodules by Using a Convolutional Neural Network to Determine Volume Change at Chest CT. Ohno Y; Aoyagi K; Yaguchi A; Seki S; Ueno Y; Kishida Y; Takenaka D; Yoshikawa T Radiology; 2020 Aug; 296(2):432-443. PubMed ID: 32452736 [TBL] [Abstract][Full Text] [Related]
13. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Cascio D; Magro R; Fauci F; Iacomi M; Raso G Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972 [TBL] [Abstract][Full Text] [Related]
14. Commercially available computer-aided detection system for pulmonary nodules on thin-section images using 64 detectors-row CT: preliminary study of 48 cases. Yanagawa M; Honda O; Yoshida S; Ono Y; Inoue A; Daimon T; Sumikawa H; Mihara N; Johkoh T; Tomiyama N; Nakamura H Acad Radiol; 2009 Aug; 16(8):924-33. PubMed ID: 19394873 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the performance of a deep learning-based computer-aided diagnosis (DL-CAD) system for detecting and characterizing lung nodules: Comparison with the performance of double reading by radiologists. Li L; Liu Z; Huang H; Lin M; Luo D Thorac Cancer; 2019 Feb; 10(2):183-192. PubMed ID: 30536611 [TBL] [Abstract][Full Text] [Related]
16. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. Sim Y; Chung MJ; Kotter E; Yune S; Kim M; Do S; Han K; Kim H; Yang S; Lee DJ; Choi BW Radiology; 2020 Jan; 294(1):199-209. PubMed ID: 31714194 [TBL] [Abstract][Full Text] [Related]
17. A cascade and heterogeneous neural network for CT pulmonary nodule detection and its evaluation on both phantom and patient data. Xiao Y; Wang X; Li Q; Fan R; Chen R; Shao Y; Chen Y; Gao Y; Liu A; Chen L; Liu S Comput Med Imaging Graph; 2021 Jun; 90():101889. PubMed ID: 33848755 [TBL] [Abstract][Full Text] [Related]
19. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Suzuki K; Armato SG; Li F; Sone S; Doi K Med Phys; 2003 Jul; 30(7):1602-17. PubMed ID: 12906178 [TBL] [Abstract][Full Text] [Related]
20. The Gap in the Thickness: Estimating Effectiveness of Pulmonary Nodule Detection in Thick- and Thin-Section CT Images with 3D Deep Neural Networks. Guo Q; Wang C; Guo J; Bai H; Xu X; Yang L; Wang J; Chen N; Wang Z; Gan Y; Liu L; Li W; Yi Z Comput Methods Programs Biomed; 2023 Feb; 229():107290. PubMed ID: 36502546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]