BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3242565)

  • 1. Water of hydration in the intra- and extra-cellular environment of human erythrocytes.
    Cameron IL; Ord VA; Fullerton GD
    Biochem Cell Biol; 1988 Nov; 66(11):1186-99. PubMed ID: 3242565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water proton magnetic resonance studies of normal and sickle erythrocytes. Temperature and volume dependence.
    Zipp A; James TL; Kuntz ID; Shohet SB
    Biochim Biophys Acta; 1976 Apr; 428(2):291-303. PubMed ID: 1276160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities.
    Grgac K; Li W; Huang A; Qin Q; van Zijl PC
    Magn Reson Imaging; 2017 May; 38():234-249. PubMed ID: 27993533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR relaxation of protein and water protons in diamagnetic hemoglobin solutions.
    Eisenstadt M
    Biochemistry; 1985 Jul; 24(14):3407-21. PubMed ID: 4041420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of the hydration of lysozyme by an NMR titration method.
    Fullerton GD; Ord VA; Cameron IL
    Biochim Biophys Acta; 1986 Feb; 869(3):230-46. PubMed ID: 3947638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maintenance and mobility of hemoglobin and water within the human erythrocyte after detergent disruption of the plasma membrane.
    Cameron IL; Cox LA; Liu XR; Fullerton GD
    J Cell Physiol; 1991 Dec; 149(3):365-74. PubMed ID: 1660478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31P NMR relaxation time studies of 2,3-diphosphoglycerate in solution and intact erythrocytes.
    Christensen M; Jacobsen JP
    Magn Reson Med; 1988 Jun; 7(2):197-203. PubMed ID: 3398766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational and translational water diffusion in the hemoglobin hydration shell: dielectric and proton nuclear relaxation measurements.
    Steinhoff HJ; Kramm B; Hess G; Owerdieck C; Redhardt A
    Biophys J; 1993 Oct; 65(4):1486-95. PubMed ID: 8274642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of macromolecular polymerization of spin-lattice relaxation of aqueous solutions.
    Fullerton GD; Finnie MF; Hunter KE; Ord VA; Cameron IL
    Magn Reson Imaging; 1987; 5(5):353-70. PubMed ID: 3695822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in water proton relaxation time during erythrocyte maturation.
    Cameron IL; Dung HC; Hunter KE; Hazlewood CF
    J Cell Physiol; 1983 Sep; 116(3):409-14. PubMed ID: 6309873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonsolvent water in human erythrocytes and hemoglobin solutions.
    Bobo CM
    J Gen Physiol; 1967 Dec; 50(11):2547-64. PubMed ID: 5584620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between ice crystal size, water content and proton NMR relaxation times in cells.
    Cameron IL; Hunter KE; Ord VA; Fullerton GD
    Physiol Chem Phys Med NMR; 1985; 17(4):371-86. PubMed ID: 3836419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological implications of androgen dependent changes in proton-NMR relaxation times in rat ventral prostate.
    Braunschweiger PG; Glode LM; Maring EM; Machus K; Reynolds K
    Prostate; 1986; 9(3):283-94. PubMed ID: 3095803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermolecular interactions of oxygenated sickle hemoglobin molecules in cells and cell-free solutions.
    Lindstrom TR; Koenig SH; Boussios T; Bertles JF
    Biophys J; 1976 Jun; 16(6):679-89. PubMed ID: 179633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Nuclear magnetic relaxation of aqueous solutions of proteins, plasma, erythrocytes, and blood].
    Zefirova TP; Glebov AN; Gur'ev EN; Mavliautdinov RS; Tarasov OIu
    Biull Eksp Biol Med; 1991 Oct; 112(10):378-81. PubMed ID: 1804349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of hemolytic anemia in homozygous hemoglobin C disease. Electron microscopic study by the freeze-etching technique.
    Lessin LS; Jensen WN; Ponder E
    J Exp Med; 1969 Sep; 130(3):443-66. PubMed ID: 5807277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of water in unfertilized and fertilized sea urchin eggs.
    Merta PJ; Fullerton GD; Cameron IL
    J Cell Physiol; 1986 Jun; 127(3):439-47. PubMed ID: 3011815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The line shapes of the water proton resonances of red blood cells containing carbonyl hemoglobin, deoxyhemoglobin, and methemoglobin: implications for the interpretation of proton MRI at fields of 1.5 T and below.
    Matwiyoff NA; Gasparovic C; Mazurchuk R; Matwiyoff G
    Magn Reson Imaging; 1990; 8(3):295-301. PubMed ID: 2366641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rabbit cornea stromal hydration measured with proton NMR spectroscopy.
    Masters BR; Subramanian VH; Chance B
    Curr Eye Res; 1982-1983; 2(5):317-21. PubMed ID: 7166049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An NMR method to characterize multiple water compartments on mammalian collagen.
    Fullerton GD; Nes E; Amurao M; Rahal A; Krasnosselskaia L; Cameron I
    Cell Biol Int; 2006 Jan; 30(1):66-73. PubMed ID: 16376582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.