These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32425749)

  • 1. Bio-Inspired Techniques in a Fully Digital Approach for Lifelong Learning.
    Bianchi S; Muñoz-Martin I; Ielmini D
    Front Neurosci; 2020; 14():379. PubMed ID: 32425749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Brain-Inspired Homeostatic Neuron Based on Phase-Change Memories for Efficient Neuromorphic Computing.
    Muñoz-Martin I; Bianchi S; Hashemkhani S; Pedretti G; Melnic O; Ielmini D
    Front Neurosci; 2021; 15():709053. PubMed ID: 34489628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections.
    Dong Y; Zhao D; Li Y; Zeng Y
    Neural Netw; 2023 Aug; 165():799-808. PubMed ID: 37418862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital design of a spatial-pow-STDP learning block with high accuracy utilizing pow CORDIC for large-scale image classifier spatiotemporal SNN.
    Bahrami MK; Nazari S
    Sci Rep; 2024 Feb; 14(1):3388. PubMed ID: 38337032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks.
    Allred JM; Roy K
    Front Neurosci; 2020; 14():7. PubMed ID: 32063827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks.
    Brivio S; Ly DRB; Vianello E; Spiga S
    Front Neurosci; 2021; 15():580909. PubMed ID: 33633531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TripleBrain: A Compact Neuromorphic Hardware Core With Fast On-Chip Self-Organizing and Reinforcement Spike-Timing Dependent Plasticity.
    Wang H; He Z; Wang T; He J; Zhou X; Wang Y; Liu L; Wu N; Tian M; Shi C
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):636-650. PubMed ID: 35802542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical memristive neural networks and associative self-learning architectures using biomimetic devices.
    Zivasatienraj B; Doolittle WA
    Front Neurosci; 2023; 17():1153183. PubMed ID: 37152603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network.
    Dong M; Huang X; Xu B
    PLoS One; 2018; 13(11):e0204596. PubMed ID: 30496179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive Learning in a Spiking Neural Network: Towards an Intelligent Pattern Classifier.
    Lobov SA; Chernyshov AV; Krilova NP; Shamshin MO; Kazantsev VB
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory neural network learning for pattern recognition: an on-chip learning perspective and implementation.
    Abernot M; Azemard N; Todri-Sanial A
    Front Neurosci; 2023; 17():1196796. PubMed ID: 37397448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity.
    Pedretti G; Milo V; Ambrogio S; Carboni R; Bianchi S; Calderoni A; Ramaswamy N; Spinelli AS; Ielmini D
    Sci Rep; 2017 Jul; 7(1):5288. PubMed ID: 28706303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning.
    Lee C; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2018; 12():435. PubMed ID: 30123103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning.
    Covi E; Brivio S; Serb A; Prodromakis T; Fanciulli M; Spiga S
    Front Neurosci; 2016; 10():482. PubMed ID: 27826226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks.
    Wang RM; Hamilton TJ; Tapson JC; van Schaik A
    Front Neurosci; 2015; 9():180. PubMed ID: 26041985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems.
    Guo W; Fouda ME; Eltawil AM; Salama KN
    Front Neurosci; 2021; 15():638474. PubMed ID: 33746705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Online Learning Method Using Spike-Timing Dependent Plasticity for Neuromorphic Systems.
    Hwang S; Kim H; Kwon MW; Park J; Park BG
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6776-6780. PubMed ID: 31027028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.