BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32425896)

  • 41. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC.
    Jung J; Yu KO; Ramzi AB; Choe SH; Kim SW; Han SO
    Biotechnol Bioeng; 2012 Sep; 109(9):2349-56. PubMed ID: 22511326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus.
    Aleti G; Lehner S; Bacher M; Compant S; Nikolic B; Plesko M; Schuhmacher R; Sessitsch A; Brader G
    Environ Microbiol; 2016 Sep; 18(8):2634-45. PubMed ID: 27306252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Bacillus subtilis catabolite control protein CcpA exerts all its regulatory functions by DNA-binding.
    Ludwig H; Stülke J
    FEMS Microbiol Lett; 2001 Sep; 203(1):125-9. PubMed ID: 11557150
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of glucose-repression-resistant mutants of Bacillus subtilis: identification of the glcR gene.
    Stülke J; Martin-Verstraete I; Glaser P; Rapoport G
    Arch Microbiol; 2001 Jun; 175(6):441-9. PubMed ID: 11491085
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ detection of the intermediates in the biosynthesis of surfactin, a lipoheptapeptide from Bacillus subtilis OKB 105, by whole-cell cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in combination with mutant analysis.
    Vater J; Wilde C; Kell H
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1493-8. PubMed ID: 19350532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glucose-Mediated Repression of Plant Biomass Utilization in the White-Rot Fungus
    Daly P; Peng M; Di Falco M; Lipzen A; Wang M; Ng V; Grigoriev IV; Tsang A; Mäkelä MR; de Vries RP
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31585998
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI.
    Wagner A; Küster-Schöck E; Hillen W
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):587-92. PubMed ID: 11075936
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pseudomonas aeruginosa Lon and ClpXP proteases: roles in linking carbon catabolite repression system with quorum-sensing system.
    Yang N; Lan L
    Curr Genet; 2016 Feb; 62(1):1-6. PubMed ID: 26045103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR.
    Hsieh FC; Li MC; Lin TC; Kao SS
    Curr Microbiol; 2004 Sep; 49(3):186-91. PubMed ID: 15386102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens.
    Varga J; Stirewalt VL; Melville SB
    J Bacteriol; 2004 Aug; 186(16):5221-9. PubMed ID: 15292123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis.
    Nakano MM; Xia LA; Zuber P
    J Bacteriol; 1991 Sep; 173(17):5487-93. PubMed ID: 1715856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of
    de Assis LJ; Ulas M; Ries LNA; El Ramli NAM; Sarikaya-Bayram O; Braus GH; Bayram O; Goldman GH
    mBio; 2018 Jun; 9(3):. PubMed ID: 29921666
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving Surfactin Production in
    Guo Z; Sun J; Ma Q; Li M; Dou Y; Yang S; Gao X
    Microorganisms; 2024 May; 12(5):. PubMed ID: 38792827
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters.
    Jiao S; Li X; Yu H; Yang H; Li X; Shen Z
    Biotechnol Bioeng; 2017 Apr; 114(4):832-842. PubMed ID: 27723092
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of acetyl phosphate in the in vivo activation of the response regulator ComA in Bacillus subtilis.
    Kim SB; Shin BS; Choi SK; Kim CK; Park SH
    FEMS Microbiol Lett; 2001 Feb; 195(2):179-83. PubMed ID: 11179649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr.
    Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J
    J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent trends in the biochemistry of surfactin.
    Peypoux F; Bonmatin JM; Wallach J
    Appl Microbiol Biotechnol; 1999 May; 51(5):553-63. PubMed ID: 10390813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces.
    Liu J; Li W; Zhu X; Zhao H; Lu Y; Zhang C; Lu Z
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4565-4574. PubMed ID: 31011774
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antimicrobial activity of
    Lee JY; Shim JM; Yao Z; Liu X; Lee KW; Kim HJ; Ham KS; Kim JH
    Food Sci Biotechnol; 2016; 25(2):525-532. PubMed ID: 30263301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surfactin secreted by
    Feng RY; Chen YH; Lin C; Tsai CH; Yang YL; Chen YL
    Front Plant Sci; 2022; 13():998707. PubMed ID: 36388520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.