BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 32425962)

  • 1. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae.
    Goss R; Latowski D
    Front Plant Sci; 2020; 11():455. PubMed ID: 32425962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and function of xanthophyll cycle-dependent photoprotection in algae.
    Goss R; Jakob T
    Photosynth Res; 2010 Nov; 106(1-2):103-22. PubMed ID: 20224940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants.
    Goss R; Greifenhagen A; Bergner J; Volke D; Hoffmann R; Wilhelm C; Schaller-Laudel S
    Planta; 2017 Apr; 245(4):793-806. PubMed ID: 28025675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane.
    Goss R; Nerlich J; Lepetit B; Schaller S; Vieler A; Wilhelm C
    J Plant Physiol; 2009 Nov; 166(17):1839-54. PubMed ID: 19604599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation.
    Goss R; Lohr M; Latowski D; Grzyb J; Vieler A; Wilhelm C; Strzalka K
    Biochemistry; 2005 Mar; 44(10):4028-36. PubMed ID: 15751979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the compatible solute sucrose on thylakoid membrane organization and violaxanthin de-epoxidation.
    Goss R; Schwarz C; Matzner M; Wilhelm C
    Planta; 2021 Aug; 254(3):52. PubMed ID: 34392410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The xanthophyll cycle in diatom Phaeodactylum tricornutum in response to light stress.
    Kuczynska P; Jemiola-Rzeminska M; Nowicka B; Jakubowska A; Strzalka W; Burda K; Strzalka K
    Plant Physiol Biochem; 2020 May; 152():125-137. PubMed ID: 32416342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Violaxanthin and diadinoxanthin de-epoxidation in various model lipid systems.
    Latowski D; Goss R; Bojko M; Strzałka K
    Acta Biochim Pol; 2012; 59(1):101-3. PubMed ID: 22428134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids.
    Jahns P; Latowski D; Strzalka K
    Biochim Biophys Acta; 2009 Jan; 1787(1):3-14. PubMed ID: 18976630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII).
    Schaller S; Latowski D; Jemioła-Rzemińska M; Wilhelm C; Strzałka K; Goss R
    Biochim Biophys Acta; 2010 Mar; 1797(3):414-24. PubMed ID: 20035710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers.
    Latowski D; Kruk J; Burda K; Skrzynecka-Jaskier M; Kostecka-Gugała A; Strzałka K
    Eur J Biochem; 2002 Sep; 269(18):4656-65. PubMed ID: 12230579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of fucoxanthin chlorophyll protein complexes of the centric diatom Thalassiosira pseudonana associated with the xanthophyll cycle enzyme diadinoxanthin de-epoxidase.
    Goss R; Volke D; Werner LE; Kunz R; Kansy M; Hoffmann R; Wilhelm C
    IUBMB Life; 2023 Jan; 75(1):66-76. PubMed ID: 35557488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane.
    Goss R; Latowski D; Grzyb J; Vieler A; Lohr M; Wilhelm C; Strzalka K
    Biochim Biophys Acta; 2007 Jan; 1768(1):67-75. PubMed ID: 16843433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts.
    Tardy F; Havaux M
    Biochim Biophys Acta; 1997 Dec; 1330(2):179-93. PubMed ID: 9408171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shedding light on the dark side of xanthophyll cycles.
    Fernández-Marín B; Roach T; Verhoeven A; García-Plazaola JI
    New Phytol; 2021 May; 230(4):1336-1344. PubMed ID: 33452715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase.
    Latowski D; Burda K; Strzałka K
    J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes.
    Biswal S; Gupta PSS; Panda SK; Bhat HR; Rana MK
    Photosynth Res; 2023 Jun; 156(3):337-354. PubMed ID: 36847893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of monogalactosyldiacylglycerol and other thylakoid lipids on violaxanthin de-epoxidation in liposomes.
    Latowski D; Kostecka A; Strzałka K
    Biochem Soc Trans; 2000 Dec; 28(6):810-2. PubMed ID: 11171216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH.
    Gilmore AM; Mohanty N; Yamamoto HY
    FEBS Lett; 1994 Aug; 350(2-3):271-4. PubMed ID: 8070578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions.
    García-Plazaola JI; Matsubara S; Osmond CB
    Funct Plant Biol; 2007 Sep; 34(9):759-773. PubMed ID: 32689404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.