BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 3242600)

  • 21. Arginine uptake and metabolism in cultured murine macrophages.
    Baydoun AR; Bogle RG; Pearson JD; Mann GE
    Agents Actions; 1993; 38 Spec No():C127-9. PubMed ID: 8317306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages.
    Lancaster JR; Hibbs JB
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1223-7. PubMed ID: 2153975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide.
    Kwon NS; Stuehr DJ; Nathan CF
    J Exp Med; 1991 Oct; 174(4):761-7. PubMed ID: 1717630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism.
    Green SJ; Meltzer MS; Hibbs JB; Nacy CA
    J Immunol; 1990 Jan; 144(1):278-83. PubMed ID: 2104889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induction of nitric oxide synthase is a necessary precondition for expression of tumor necrosis factor-independent tumoricidal activity by activated macrophages.
    Keller R; Bassetti S; Keist R; Mülsch A; Klauser S
    Biochem Biophys Res Commun; 1992 May; 184(3):1364-71. PubMed ID: 1375460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Killing of Leishmania parasites in activated murine macrophages is based on an L-arginine-dependent process that produces nitrogen derivatives.
    Mauël J; Ransijn A; Buchmüller-Rouiller Y
    J Leukoc Biol; 1991 Jan; 49(1):73-82. PubMed ID: 1845812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of nitric oxide and citrulline from L-arginine by constitutive nitric oxide synthase present in rabbit corpus cavernosum.
    Bush PA; Gonzalez NE; Ignarro LJ
    Biochem Biophys Res Commun; 1992 Jul; 186(1):308-14. PubMed ID: 1378725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inducible L-arginine-dependent nitric oxide synthase activity in bovine bone marrow-derived macrophages.
    Adler H; Peterhans E; Nicolet J; Jungi TW
    Biochem Biophys Res Commun; 1994 Jan; 198(2):510-5. PubMed ID: 7507664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of nitric oxide synthase in human and bovine oviduct.
    Rosselli M; Dubey RK; Rosselli MA; Macas E; Fink D; Lauper U; Keller PJ; Imthurn B
    Mol Hum Reprod; 1996 Aug; 2(8):607-12. PubMed ID: 9239673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BaiJiu Increases Nitric Oxide Bioactivity of Chinese Herbs Used to Treat Coronary Artery Disease Through the NO3--NO2--NO Pathway.
    Tang Y; Liu Y; Yin B; Guo Y; Liu Y; Zhao Y; Wang Y; Cao Y; Feng J; Leng J; Huang C
    J Cardiovasc Pharmacol; 2019 Oct; 74(4):348-354. PubMed ID: 31498236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation of macrophage nitric oxide synthase activity by NG-methyl-L-arginine.
    Olken NM; Rusche KM; Richards MK; Marletta MA
    Biochem Biophys Res Commun; 1991 Jun; 177(2):828-33. PubMed ID: 2049105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discrimination between citrulline and arginine transport in activated murine macrophages: inefficient synthesis of NO from recycling of citrulline to arginine.
    Baydoun AR; Bogle RG; Pearson JD; Mann GE
    Br J Pharmacol; 1994 Jun; 112(2):487-92. PubMed ID: 8075867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NO accounts completely for the oxygenated nitrogen species generated by enzymic L-arginine oxygenation.
    Mülsch A; Vanin A; Mordvintcev P; Hauschildt S; Busse R
    Biochem J; 1992 Dec; 288 ( Pt 2)(Pt 2):597-603. PubMed ID: 1281408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumor necrosis factor-alpha-dependent production of reactive nitrogen intermediates mediates IFN-gamma plus IL-2-induced murine macrophage tumoricidal activity.
    Cox GW; Melillo G; Chattopadhyay U; Mullet D; Fertel RH; Varesio L
    J Immunol; 1992 Nov; 149(10):3290-6. PubMed ID: 1431106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and action of nitric oxide in rat glomerular mesangial cells.
    Shultz PJ; Tayeh MA; Marletta MA; Raij L
    Am J Physiol; 1991 Oct; 261(4 Pt 2):F600-6. PubMed ID: 1718166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of nitrogen oxide production following experimental thermal injury in rats.
    Becker WK; Shippee RL; McManus AT; Mason AD; Pruitt BA
    J Trauma; 1993 Jun; 34(6):855-62. PubMed ID: 8315681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitric oxide metabolism in wounds.
    Schäffer MR; Tantry U; van Wesep RA; Barbul A
    J Surg Res; 1997 Jul; 71(1):25-31. PubMed ID: 9271274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isotopic investigation of nitric oxide metabolism in disease.
    Luiking YC; Deutz NE
    Curr Opin Clin Nutr Metab Care; 2003 Jan; 6(1):103-8. PubMed ID: 12496687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possible mechanism of nitric oxide production from N(G)-hydroxy-L-arginine or hydroxylamine by superoxide ion.
    Vetrovsky P; Stoclet JC; Entlicher G
    Int J Biochem Cell Biol; 1996 Dec; 28(12):1311-8. PubMed ID: 9081745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic probes of N-hydroxylation of L-arginine by the inducible nitric oxide synthase from murine macrophages.
    Pufahl RA; Nanjappan PG; Woodard RW; Marletta MA
    Biochemistry; 1992 Jul; 31(29):6822-8. PubMed ID: 1379071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.