These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32426344)
1. The Merits of Dynamic Data Acquisition for Realistic Myocontrol. Gigli A; Gijsberts A; Castellini C Front Bioeng Biotechnol; 2020; 8():361. PubMed ID: 32426344 [TBL] [Abstract][Full Text] [Related]
2. Natural Myocontrol in a Realistic Setting: a Comparison Between Static and Dynamic Data Acquisition. Gigli A; Gijsberts A; Castellini C IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1061-1066. PubMed ID: 31374770 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous assessment and training of an upper-limb amputee using incremental machine-learning-based myocontrol: a single-case experimental design. Nowak M; Bongers RM; van der Sluis CK; Albu-Schäffer A; Castellini C J Neuroeng Rehabil; 2023 Apr; 20(1):39. PubMed ID: 37029432 [TBL] [Abstract][Full Text] [Related]
4. Progressive unsupervised control of myoelectric upper limbs. Gigli A; Gijsberts A; Nowak M; Vujaklija I; Castellini C J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37883969 [No Abstract] [Full Text] [Related]
5. Improving bimanual interaction with a prosthesis using semi-autonomous control. Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087 [TBL] [Abstract][Full Text] [Related]
6. Feedback-aided data acquisition improves myoelectric control of a prosthetic hand. Gigli A; Brusamento D; Meattini R; Melchiorri C; Castellini C J Neural Eng; 2020 Nov; 17(5):056047. PubMed ID: 33022665 [TBL] [Abstract][Full Text] [Related]
7. Automated Instability Detection for Interactive Myocontrol of Prosthetic Hands. Meattini R; Nowak M; Melchiorri C; Castellini C Front Neurorobot; 2019; 13():68. PubMed ID: 31507401 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous and Proportional Real-Time Myocontrol of Up to Three Degrees of Freedom of the Wrist and Hand. Nowak M; Vujaklija I; Sturma A; Castellini C; Farina D IEEE Trans Biomed Eng; 2023 Feb; 70(2):459-469. PubMed ID: 35881594 [TBL] [Abstract][Full Text] [Related]
9. Unsupervised Myocontrol of a Virtual Hand Based on a Coadaptive Abstract Motor Mapping. Gigli A; Gijsberts A; Castellini C IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176159 [TBL] [Abstract][Full Text] [Related]
10. Virtual Training of the Myosignal. Terlaak B; Bouwsema H; van der Sluis CK; Bongers RM PLoS One; 2015; 10(9):e0137161. PubMed ID: 26351838 [TBL] [Abstract][Full Text] [Related]
11. The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations. Nowak M; Castellini C PLoS One; 2016; 11(9):e0161678. PubMed ID: 27606674 [TBL] [Abstract][Full Text] [Related]
12. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation. Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Forearm Muscle Activation in Duchenne Muscular Dystrophy via High-Density Electromyography: A Case Study on the Implications for Myoelectric Control. Nizamis K; Rijken NHM; van Middelaar R; Neto J; Koopman BFJM; Sartori M Front Neurol; 2020; 11():231. PubMed ID: 32351441 [TBL] [Abstract][Full Text] [Related]
14. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning. Vasan G; Pilarski PM IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025 [TBL] [Abstract][Full Text] [Related]
15. Learning to teleoperate an upper-limb assistive humanoid robot for bimanual daily-living tasks. Connan M; Sierotowicz M; Henze B; Porges O; Albu-Schäffer A; Roa MA; Castellini C Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34757953 [No Abstract] [Full Text] [Related]
16. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees. Amsuess S; Goebel P; Graimann B; Farina D IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406 [TBL] [Abstract][Full Text] [Related]
17. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees. Teh Y; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1605-1613. PubMed ID: 32396094 [TBL] [Abstract][Full Text] [Related]
18. A multifaceted suite of metrics for comparative myoelectric prosthesis controller research. Williams HE; Shehata AW; Cheng KY; Hebert JS; Pilarski PM PLoS One; 2024; 19(5):e0291279. PubMed ID: 38739557 [TBL] [Abstract][Full Text] [Related]
19. Performance among different types of myocontrolled tasks is not related. Heerschop A; van der Sluis CK; Otten E; Bongers RM Hum Mov Sci; 2020 Apr; 70():102592. PubMed ID: 32217210 [TBL] [Abstract][Full Text] [Related]
20. Upper-Limb Electromyogram Classification of Reaching-to-Grasping Tasks Based on Convolutional Neural Networks for Control of a Prosthetic Hand. Kim KT; Park S; Lim TH; Lee SJ Front Neurosci; 2021; 15():733359. PubMed ID: 34712114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]