These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32426481)

  • 1. Chemomechanical origin of directed locomotion driven by internal chemical signals.
    Ren L; Yuan L; Gao Q; Teng R; Wang J; Epstein IR
    Sci Adv; 2020 May; 6(18):eaaz9125. PubMed ID: 32426481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous reciprocating migration of an active material.
    Ren L; Wang M; Pan C; Gao Q; Liu Y; Epstein IR
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8704-8709. PubMed ID: 28760961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational Locomotion of an Active Gel Driven by Internal Chemical Signals.
    Wang J; Ren L; Teng R; Epstein IR; Wang H; Zhang M; Yuan L; Gao Q
    J Phys Chem Lett; 2021 Dec; 12(50):11987-11991. PubMed ID: 34889612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrograde and Direct Wave Locomotion in a Photosensitive Self-Oscillating Gel.
    Ren L; She W; Gao Q; Pan C; Ji C; Epstein IR
    Angew Chem Int Ed Engl; 2016 Nov; 55(46):14301-14305. PubMed ID: 27735127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmed Locomotion of an Active Gel Driven by Spiral Waves.
    Ren L; Wang L; Gao Q; Teng R; Xu Z; Wang J; Pan C; Epstein IR
    Angew Chem Int Ed Engl; 2020 Apr; 59(18):7106-7112. PubMed ID: 32059069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometry of Wave Propagation on Active Deformable Surfaces.
    Miller PW; Stoop N; Dunkel J
    Phys Rev Lett; 2018 Jun; 120(26):268001. PubMed ID: 30004728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired underwater locomotion of light-driven liquid crystal gels.
    Shahsavan H; Aghakhani A; Zeng H; Guo Y; Davidson ZS; Priimagi A; Sitti M
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5125-5133. PubMed ID: 32094173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy efficiency of mobile soft robots.
    Shui L; Zhu L; Yang Z; Liu Y; Chen X
    Soft Matter; 2017 Nov; 13(44):8223-8233. PubMed ID: 29083008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitions of Collective Motions Driven by Phase Resetting.
    Teng R; Li Y; Ren L; Ma J; Epstein IR; Gao Q
    Chemphyschem; 2023 Jun; 24(12):e202300054. PubMed ID: 36988019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic-instability-enabled locomotion.
    Nagarkar A; Lee WK; Preston DJ; Nemitz MP; Deng NN; Whitesides GM; Mahadevan L
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33602811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots.
    Kano T; Yoshizawa R; Ishiguro A
    Bioinspir Biomim; 2017 Aug; 12(4):046009. PubMed ID: 28581439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics.
    Nurzaman SG; Yu X; Kim Y; Iida F
    Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Adaptive Bioinspired Foot Mechanism Based on Tensegrity Structures.
    Sun J; Song G; Chu J; Ren L
    Soft Robot; 2019 Dec; 6(6):778-789. PubMed ID: 31414964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Powered Directional Nanofluidic Ion Transport in Kirigami-Made Asymmetric Photonic-Ionic Devices.
    Jia M; Kong X; Wang L; Zhang Y; Quan D; Ding L; Lu D; Jiang L; Guo W
    Small; 2020 Jan; 16(1):e1905557. PubMed ID: 31805218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.
    Henke EM; Schlatter S; Anderson IA
    Soft Robot; 2017 Dec; 4(4):353-366. PubMed ID: 29251566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Architectures of soft robotic locomotion enabled by simple mechanical principles.
    Zhu L; Cao Y; Liu Y; Yang Z; Chen X
    Soft Matter; 2017 Jun; 13(25):4441-4456. PubMed ID: 28632275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition and formation of the torque pattern of undulatory locomotion in resistive force dominated media.
    Ming T; Ding Y
    Bioinspir Biomim; 2018 May; 13(4):046001. PubMed ID: 29557345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EuMoBot: replicating euglenoid movement in a soft robot.
    Digumarti KM; Conn AT; Rossiter J
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30464056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.