These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32426481)

  • 21. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.
    Manfredi L; Assaf T; Mintchev S; Marrazza S; Capantini L; Orofino S; Ascari L; Grillner S; Wallén P; Ekeberg O; Stefanini C; Dario P
    Biol Cybern; 2013 Oct; 107(5):513-27. PubMed ID: 24030051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion.
    Astley HC; Gong C; Dai J; Travers M; Serrano MM; Vela PA; Choset H; Mendelson JR; Hu DL; Goldman DI
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6200-5. PubMed ID: 25831489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolving Soft Locomotion in Aquatic and Terrestrial Environments: Effects of Material Properties and Environmental Transitions.
    Corucci F; Cheney N; Giorgio-Serchi F; Bongard J; Laschi C
    Soft Robot; 2018 Aug; 5(4):475-495. PubMed ID: 29985740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling study of spinal generators structure; the role of alpha motoneurons, Renshaw cells and Ia interneurons in locomotion.
    Zmysłowski W; Kasicki S
    Acta Neurobiol Exp (Wars); 1986; 46(1):57-72. PubMed ID: 3739761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Introduction to focus issue: bipedal locomotion--from robots to humans.
    Milton JG
    Chaos; 2009 Jun; 19(2):026101. PubMed ID: 19566261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictability of visual perturbation during locomotion: implications for corrective efference copy signaling.
    Chagnaud BP; Simmers J; Straka H
    Biol Cybern; 2012 Dec; 106(11-12):669-79. PubMed ID: 23179256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The head direction signal: origins and sensory-motor integration.
    Taube JS
    Annu Rev Neurosci; 2007; 30():181-207. PubMed ID: 17341158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wave patterns driven by chemomechanical instabilities in responsive gels.
    Labrot V; De Kepper P; Boissonade J; Szalai I; Gauffre F
    J Phys Chem B; 2005 Nov; 109(46):21476-80. PubMed ID: 16853785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small-scale soft-bodied robot with multimodal locomotion.
    Hu W; Lum GZ; Mastrangeli M; Sitti M
    Nature; 2018 Feb; 554(7690):81-85. PubMed ID: 29364873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The advantage of mucus for adhesive locomotion in gastropods.
    Iwamoto M; Ueyama D; Kobayashi R
    J Theor Biol; 2014 Jul; 353():133-41. PubMed ID: 24631870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Locomotion and Task Demands Differentially Modulate Thalamic Audiovisual Processing during Active Search.
    Williamson RS; Hancock KE; Shinn-Cunningham BG; Polley DB
    Curr Biol; 2015 Jul; 25(14):1885-91. PubMed ID: 26119749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locomotive and reptation motion induced by internal force and friction.
    Sakaguchi H; Ishihara T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061903. PubMed ID: 21797399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photo-Controlled Waves and Active Locomotion.
    Epstein IR; Gao Q
    Chemistry; 2017 Aug; 23(47):11181-11188. PubMed ID: 28474377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Swimming to Stability: Structural and Dynamical Control via Active Doping.
    Omar AK; Wu Y; Wang ZG; Brady JF
    ACS Nano; 2019 Jan; 13(1):560-572. PubMed ID: 30592601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Locomotion of arthropods in aquatic environment and their applications in robotics.
    Kwak B; Bae J
    Bioinspir Biomim; 2018 May; 13(4):041002. PubMed ID: 29508773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light-Driven, Caterpillar-Inspired Miniature Inching Robot.
    Zeng H; Wani OM; Wasylczyk P; Priimagi A
    Macromol Rapid Commun; 2018 Jan; 39(1):. PubMed ID: 28561989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sensory-driven controller for quadruped locomotion.
    Ferreira C; Santos CP
    Biol Cybern; 2017 Feb; 111(1):49-67. PubMed ID: 28062927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.