These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32426607)

  • 1. Characterization of Cu
    Engberg S; Symonowicz J; Schou J; Canulescu S; Jensen KMØ
    ACS Omega; 2020 May; 5(18):10501-10509. PubMed ID: 32426607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Layer Grown Zinc-Tin Oxide as an Alternative Buffer Layer for Cu
    Martin NM; Törndahl T; Babucci M; Larsson F; Simonov K; Gajdek D; Merte LR; Rensmo H; Platzer-Björkman C
    ACS Appl Energy Mater; 2022 Nov; 5(11):13971-13980. PubMed ID: 36465259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Counteranion on the Formation Pathway of Cu
    Ahmad R; Saddiqi NU; Wu M; Prato M; Spiecker E; Peukert W; Distaso M
    Inorg Chem; 2020 Feb; 59(3):1973-1984. PubMed ID: 31971380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Cu
    Zhang X; Fu E; Zheng M; Wang Y
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31739533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route.
    Mirbagheri N; Engberg S; Crovetto A; Simonsen SB; Hansen O; Lam YM; Schou J
    Nanotechnology; 2016 May; 27(18):185603. PubMed ID: 27005863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Post-Annealing of Cu
    Ataollahi N; Bazerla F; Malerba C; Chiappini A; Ferrari M; Di Maggio R; Scardi P
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Two-Step Magnetron Sputtering Approach for the Synthesis of Cu
    Zaki MY; Sava F; Simandan ID; Buruiana AT; Stavarache I; Bocirnea AE; Mihai C; Velea A; Galca AC
    ACS Omega; 2022 Jul; 7(27):23800-23814. PubMed ID: 35847258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Favorable Bonding and Band Structures of Cu
    Turnbull MJ; Yiu YM; Goldman M; Sham TK; Ding Z
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32683-32695. PubMed ID: 35817012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synthesis and characterization of Cu
    Al-Shakban M; Matthews PD; Savjani N; Zhong XL; Wang Y; Missous M; O'Brien P
    J Mater Sci; 2017; 52(21):12761-12771. PubMed ID: 32025050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Static and dynamic components of Debye-Waller coefficients in the novel cubic polymorph of low-temperature disordered Cu
    Isotta E; Mukherjee B; Bette S; Dinnebier R; Scardi P
    IUCrJ; 2022 Mar; 9(Pt 2):272-285. PubMed ID: 35371505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Hydrothermal Synthesis of Cu
    Henríquez R; Nogales PS; Moreno PG; Cartagena EM; Bongiorno PL; Navarrete-Astorga E; Dalchiele EA
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Cu₂ZnSnS₄ (CZTS) Nanoparticle Inks for Growth of CZTS Films for Solar Cells.
    Zhang X; Fu E; Wang Y; Zhang C
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30832326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annealing Induced Shape Transformation of CZTS Nanorods Based Thin Films.
    Rajesh G; Muthukumarasamy N; Velauthapillai D; Batabyal SK
    Langmuir; 2017 Jun; 33(24):6151-6158. PubMed ID: 28534636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of 1,8-Diiodooctane (DIO) Additive on the Active Layer Properties of Cu
    Mkawi EM; Al-Hadeethi Y; Arkook B; Bekyarova E
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronics of Anion Hot Injection-Synthesized Te-Functionalized Kesterite Nanomaterial.
    Nwambaekwe KC; Masikini M; Mathumba P; Ramoroka ME; Duoman S; John-Denk VS; Iwuoha EI
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu₂ZnSnS₄ nanoparticles.
    Tan JM; Lee YH; Pedireddy S; Baikie T; Ling XY; Wong LH
    J Am Chem Soc; 2014 May; 136(18):6684-92. PubMed ID: 24702183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films.
    Vishwakarma M; Karakulina OM; Abakumov AM; Hadermann J; Mehta BR
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1688-1695. PubMed ID: 29448646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-cost electrospun highly crystalline kesterite Cu2ZnSnS4 nanofiber counter electrodes for efficient dye-sensitized solar cells.
    Mali SS; Patil PS; Hong CK
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1688-96. PubMed ID: 24383575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wurtzite CZTS nanocrystals and phase evolution to kesterite thin film for solar energy harvesting.
    Ghorpade UV; Suryawanshi MP; Shin SW; Hong CW; Kim I; Moon JH; Yun JH; Kim JH; Kolekar SS
    Phys Chem Chem Phys; 2015 Aug; 17(30):19777-88. PubMed ID: 26153341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-selective synthesis of Cu2ZnSnS4 nanocrystals using different sulfur precursors.
    Li Z; Lui AL; Lam KH; Xi L; Lam YM
    Inorg Chem; 2014 Oct; 53(20):10874-80. PubMed ID: 25264823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.