These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32426695)

  • 1. Probabilistic Human Intent Recognition for Shared Autonomy in Assistive Robotics.
    Jain S; Argall B
    ACM Trans Hum Robot Interact; 2019 Dec; 9(1):. PubMed ID: 32426695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recursive Bayesian Human Intent Recognition in Shared-Control Robotics.
    Jain S; Argall B
    Rep U S; 2018 Oct; 2018():3905-3912. PubMed ID: 32300492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Intent Disambiguation for Shared Control Robots.
    Gopinath DE; Argall BD
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1497-1506. PubMed ID: 32305928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shared autonomy in assistive mobile robots: a review.
    Udupa S; Kamat VR; Menassa CC
    Disabil Rehabil Assist Technol; 2023 Aug; 18(6):827-848. PubMed ID: 34133906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-in-the-Loop Optimization of Shared Autonomy in Assistive Robotics.
    Gopinath D; Jain S; Argall BD
    IEEE Robot Autom Lett; 2017 Jan; 2(1):247-254. PubMed ID: 30662953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning latent actions to control assistive robots.
    Losey DP; Jeon HJ; Li M; Srinivasan K; Mandlekar A; Garg A; Bohg J; Sadigh D
    Auton Robots; 2022; 46(1):115-147. PubMed ID: 34366568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaze-Based Shared Autonomy Framework With Real-Time Action Primitive Recognition for Robot Manipulators.
    Wang X; Santos VJ
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4306-4317. PubMed ID: 37906485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrective Shared Autonomy for Addressing Task Variability.
    Hagenow M; Senft E; Radwin R; Gleicher M; Mutlu B; Zinn M
    IEEE Robot Autom Lett; 2021 Apr; 6(2):3720-3727. PubMed ID: 33869746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface Operation and Implications for Shared-Control Assistive Robots.
    Javaremi MN; Young M; Argall BD
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():232-239. PubMed ID: 31374635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assistive Robotic Manipulation through Shared Autonomy and a Body-Machine Interface.
    Jain S; Farshchiansadegh A; Broad A; Abdollahi F; Mussa-Ivaldi F; Argall B
    IEEE Int Conf Rehabil Robot; 2015 Aug; 2015():526-531. PubMed ID: 26855690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.
    Chung MJ; Friesen AL; Fox D; Meltzoff AN; Rao RP
    PLoS One; 2015; 10(11):e0141965. PubMed ID: 26536366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.
    Ficocelli M; Terao J; Nejat G
    IEEE Trans Cybern; 2016 Dec; 46(12):2911-2923. PubMed ID: 26552105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task.
    Haofei Wang ; Xujiong Dong ; Zhaokang Chen ; Shi BE
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1476-9. PubMed ID: 26736549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-Level Authoring for Remote Robot Teleoperation.
    Senft E; Hagenow M; Welsh K; Radwin R; Zinn M; Gleicher M; Mutlu B
    Front Robot AI; 2021; 8():707149. PubMed ID: 34646866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of visual and auditory EEG interfaces for robot multi-stage task control.
    Arulkumaran K; Di Vincenzo M; Dossa RFJ; Akiyama S; Ogawa Lillrank D; Sato M; Tomeoka K; Sasai S
    Front Robot AI; 2024; 11():1329270. PubMed ID: 38783889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PrĂ©cis of bayesian rationality: The probabilistic approach to human reasoning.
    Oaksford M; Chater N
    Behav Brain Sci; 2009 Feb; 32(1):69-84; discussion 85-120. PubMed ID: 19210833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helping People Through Space and Time: Assistance as a Perspective on Human-Robot Interaction.
    Newman BA; Aronson RM; Kitani K; Admoni H
    Front Robot AI; 2021; 8():720319. PubMed ID: 35155586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of two adjustable-autonomy models on the scalability of single-human/multiple-robot teams for exploration missions.
    Valero-Gomez A; de la Puente P; Hernando M
    Hum Factors; 2011 Dec; 53(6):703-16. PubMed ID: 22235531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.
    Abu-Alqumsan M; Ebert F; Peer A
    J Neural Eng; 2017 Jun; 14(3):036024. PubMed ID: 28294109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.