These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32426962)

  • 21. Scanning ion-conductance microscopy with a double-barreled nanopipette for topographic imaging of charged chromosomes.
    Iwata F; Shirasawa T; Mizutani Y; Ushiki T
    Microscopy (Oxf); 2021 Oct; 70(5):423-435. PubMed ID: 33644794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature measurements of heated microcantilevers using scanning thermoreflectance microscopy.
    Kim J; Han S; Walsh T; Park K; Jae Lee B; King WP; Lee J
    Rev Sci Instrum; 2013 Mar; 84(3):034903. PubMed ID: 23556839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous mapping of nanoscale topography and surface potential of charged surfaces by scanning ion conductance microscopy.
    Chen F; Panday N; Li X; Ma T; Guo J; Wang X; Kos L; Hu K; Gu N; He J
    Nanoscale; 2020 Oct; 12(40):20737-20748. PubMed ID: 33030171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles.
    Kilbane JD; Chan EM; Monachon C; Borys NJ; Levy ES; Pickel AD; Urban JJ; Schuck PJ; Dames C
    Nanoscale; 2016 Jun; 8(22):11611-6. PubMed ID: 27216164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The scanning ion-conductance microscope.
    Hansma PK; Drake B; Marti O; Gould SA; Prater CB
    Science; 1989 Feb; 243(4891):641-3. PubMed ID: 2464851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Apparent self-heating of individual upconverting nanoparticle thermometers.
    Pickel AD; Teitelboim A; Chan EM; Borys NJ; Schuck PJ; Dames C
    Nat Commun; 2018 Nov; 9(1):4907. PubMed ID: 30464256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative Visualization of Molecular Delivery and Uptake at Living Cells with Self-Referencing Scanning Ion Conductance Microscopy-Scanning Electrochemical Microscopy.
    Page A; Kang M; Armitstead A; Perry D; Unwin PR
    Anal Chem; 2017 Mar; 89(5):3021-3028. PubMed ID: 28264566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters.
    Li Z; Lopez-Ortega A; Aranda-Ramos A; Tajada JL; Sort J; Nogues C; Vavassori P; Nogues J; Sepulveda B
    Small; 2018 Jun; 14(24):e1800868. PubMed ID: 29761629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Speed Scanning Ion Conductance Microscopy for Quantitative Analysis of Nanoscale Dynamics of Microvilli.
    Ida H; Takahashi Y; Kumatani A; Shiku H; Matsue T
    Anal Chem; 2017 Jun; 89(11):6015-6020. PubMed ID: 28481079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scanning Ion Conductance Microscopy: Surface Charge Effects on Electroosmotic Flow Delivery from a Nanopipette.
    Teahan J; Perry D; Chen B; McPherson IJ; Meloni GN; Unwin PR
    Anal Chem; 2021 Sep; 93(36):12281-12288. PubMed ID: 34460243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping.
    Nadappuram BP; McKelvey K; Al Botros R; Colburn AW; Unwin PR
    Anal Chem; 2013 Sep; 85(17):8070-4. PubMed ID: 23919610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Employing Cathodoluminescence for Nanothermometry and Thermal Transport Measurements in Semiconductor Nanowires.
    Mauser KW; Solà-Garcia M; Liebtrau M; Damilano B; Coulon PM; Vézian S; Shields PA; Meuret S; Polman A
    ACS Nano; 2021 Jul; 15(7):11385-11395. PubMed ID: 34156820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted Nanoparticle Thermometry: A Method to Measure Local Temperature at the Nanoscale Point Where Water Vapor Nucleation Occurs.
    Alaulamie AA; Baral S; Johnson SC; Richardson HH
    Small; 2017 Jan; 13(1):. PubMed ID: 27699975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contactless Temperature Sensing at the Microscale Based on Titanium Dioxide Raman Thermometry.
    Zani V; Pedron D; Pilot R; Signorini R
    Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33918227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale thermometry under ambient conditions via scanning thermal microscopy with 3D scanning differential method.
    Sun L; Wang W; Jiang P; Bao X
    Rev Sci Instrum; 2022 Nov; 93(11):114902. PubMed ID: 36461479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High spatial resolution Raman thermometry analysis of TiO2 microparticles.
    Lundt N; Kelly ST; Rödel T; Remez B; Schwartzberg AM; Ceballos A; Baldasseroni C; Anastasi PA; Cox M; Hellman F; Leone SR; Gilles MK
    Rev Sci Instrum; 2013 Oct; 84(10):104906. PubMed ID: 24182150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying Surface Temperature of Thermoplasmonic Nanostructures.
    Hu S; Liu BJ; Feng JM; Zong C; Lin KQ; Wang X; Wu DY; Ren B
    J Am Chem Soc; 2018 Oct; 140(42):13680-13686. PubMed ID: 30280886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative thermometry of nanoscale hot spots.
    Menges F; Riel H; Stemmer A; Gotsmann B
    Nano Lett; 2012 Feb; 12(2):596-601. PubMed ID: 22214277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.