BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32427225)

  • 1. Antiviral Peptides: Identification and Validation.
    Agarwal G; Gabrani R
    Int J Pept Res Ther; 2021; 27(1):149-168. PubMed ID: 32427225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phage display of combinatorial peptide libraries: application to antiviral research.
    Castel G; Chtéoui M; Heyd B; Tordo N
    Molecules; 2011 Apr; 16(5):3499-518. PubMed ID: 21522083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals.
    Mousavi Maleki MS; Sardari S; Ghandehari Alavijeh A; Madanchi H
    Int J Pept Res Ther; 2023; 29(1):5. PubMed ID: 36466430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides.
    Hoffmann AR; Guha S; Wu E; Ghimire J; Wang Y; He J; Garry RF; Wimley WC
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32907984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools.
    Vincenzi M; Mercurio FA; Leone M
    Int J Mol Sci; 2024 Feb; 25(3):. PubMed ID: 38339078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review: The Antiviral Activity of Cyclic Peptides.
    Chia LY; Kumar PV; Maki MAA; Ravichandran G; Thilagar S
    Int J Pept Res Ther; 2023; 29(1):7. PubMed ID: 36471676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review.
    Akram M; Tahir IM; Shah SMA; Mahmood Z; Altaf A; Ahmad K; Munir N; Daniyal M; Nasir S; Mehboob H
    Phytother Res; 2018 May; 32(5):811-822. PubMed ID: 29356205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures.
    Pizzorno A; Terrier O; Nicolas de Lamballerie C; Julien T; Padey B; Traversier A; Roche M; Hamelin ME; Rhéaume C; Croze S; Escuret V; Poissy J; Lina B; Legras-Lachuer C; Textoris J; Boivin G; Rosa-Calatrava M
    Front Immunol; 2019; 10():60. PubMed ID: 30761132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cationic host defence peptides: potential as antiviral therapeutics.
    Gwyer Findlay E; Currie SM; Davidson DJ
    BioDrugs; 2013 Oct; 27(5):479-93. PubMed ID: 23649937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current antiviral drugs and their analysis in biological materials - Part II: Antivirals against hepatitis and HIV viruses.
    Nováková L; Pavlík J; Chrenková L; Martinec O; Červený L
    J Pharm Biomed Anal; 2018 Jan; 147():378-399. PubMed ID: 29031512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiviral drugs for viruses other than human immunodeficiency virus.
    Razonable RR
    Mayo Clin Proc; 2011 Oct; 86(10):1009-26. PubMed ID: 21964179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiviral Peptides with in vivo Activity: Development and Modes of Action.
    Gao B; Zhao D; Li L; Cheng Z; Guo Y
    Chempluschem; 2021 Nov; 86(12):1547-1558. PubMed ID: 34755499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear and dendrimeric antiviral peptides: design, chemical synthesis and activity against human respiratory syncytial virus.
    Kozhikhova KV; Shilovskiy IP; Shatilov AA; Timofeeva AV; Turetskiy EA; Vishniakova LI; Nikolskii AA; Barvinskaya ED; Karthikeyan S; Smirnov VV; Kudlay DA; Andreev SM; Khaitov MR
    J Mater Chem B; 2020 Apr; 8(13):2607-2617. PubMed ID: 32124885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NIH Consensus Statement on Management of Hepatitis C: 2002.
    NIH Consens State Sci Statements; 2002 Jun 10-12; 19(3):1-46. PubMed ID: 14768714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and development of antivirals and intervention strategies against human herpesviruses using high-throughput approach.
    Hornig J; McGregor A
    Expert Opin Drug Discov; 2014 Aug; 9(8):891-915. PubMed ID: 25003658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL
    Froggatt HM; Heaton BE; Heaton NS
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right.
    Audie J; Boyd C
    Curr Pharm Des; 2010; 16(5):567-82. PubMed ID: 19929848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiviral Peptide-Based Conjugates: State of the Art and Future Perspectives.
    Todorovski T; Kalafatovic D; Andreu D
    Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.