BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32427397)

  • 1. Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation-based estimates.
    Yang H; Ciais P; Santoro M; Huang Y; Li W; Wang Y; Bastos A; Goll D; Arneth A; Anthoni P; Arora VK; Friedlingstein P; Harverd V; Joetzjer E; Kautz M; Lienert S; Nabel JEMS; O'Sullivan M; Sitch S; Vuichard N; Wiltshire A; Zhu D
    Glob Chang Biol; 2020 Jul; 26(7):3997-4012. PubMed ID: 32427397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.
    Johnson MO; Galbraith D; Gloor M; De Deurwaerder H; Guimberteau M; Rammig A; Thonicke K; Verbeeck H; von Randow C; Monteagudo A; Phillips OL; Brienen RJ; Feldpausch TR; Lopez Gonzalez G; Fauset S; Quesada CA; Christoffersen B; Ciais P; Sampaio G; Kruijt B; Meir P; Moorcroft P; Zhang K; Alvarez-Davila E; Alves de Oliveira A; Amaral I; Andrade A; Aragao LE; Araujo-Murakami A; Arets EJ; Arroyo L; Aymard GA; Baraloto C; Barroso J; Bonal D; Boot R; Camargo J; Chave J; Cogollo A; Cornejo Valverde F; Lola da Costa AC; Di Fiore A; Ferreira L; Higuchi N; Honorio EN; Killeen TJ; Laurance SG; Laurance WF; Licona J; Lovejoy T; Malhi Y; Marimon B; Marimon BH; Matos DC; Mendoza C; Neill DA; Pardo G; Peña-Claros M; Pitman NC; Poorter L; Prieto A; Ramirez-Angulo H; Roopsind A; Rudas A; Salomao RP; Silveira M; Stropp J; Ter Steege H; Terborgh J; Thomas R; Toledo M; Torres-Lezama A; van der Heijden GM; Vasquez R; Guimarães Vieira IC; Vilanova E; Vos VA; Baker TR
    Glob Chang Biol; 2016 Dec; 22(12):3996-4013. PubMed ID: 27082541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS.
    Wulder MA; White JC; Fournier RA; Luther JE; Magnussen S
    Sensors (Basel); 2008 Jan; 8(1):529-560. PubMed ID: 27879721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea.
    Venter M; Dwyer J; Dieleman W; Ramachandra A; Gillieson D; Laurance S; Cernusak LA; Beehler B; Jensen R; Bird MI
    Glob Chang Biol; 2017 Nov; 23(11):4873-4883. PubMed ID: 28560838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deadwood stocks increase with selective logging and large tree frequency in Gabon.
    Carlson BS; Koerner SE; Medjibe VP; White LJ; Poulsen JR
    Glob Chang Biol; 2017 Apr; 23(4):1648-1660. PubMed ID: 27500502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Multi-Source Remotely Sensed Data and a Process-Based Model for Forest Aboveground Biomass Updating.
    Lu X; Zheng G; Miller C; Alvarado E
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wood density and aboveground biomass variability assessment using pre-felling inventory data in Costa Rica.
    Svob S; Arroyo-Mora JP; Kalacska M
    Carbon Balance Manag; 2014 Dec; 9(1):9. PubMed ID: 25243018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees.
    Rosenfield MF; Souza AF
    Rev Biol Trop; 2014 Mar; 62(1):359-72. PubMed ID: 24912365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data.
    Requena Suarez D; Rozendaal DMA; De Sy V; Phillips OL; Alvarez-Dávila E; Anderson-Teixeira K; Araujo-Murakami A; Arroyo L; Baker TR; Bongers F; Brienen RJW; Carter S; Cook-Patton SC; Feldpausch TR; Griscom BW; Harris N; Hérault B; Honorio Coronado EN; Leavitt SM; Lewis SL; Marimon BS; Monteagudo Mendoza A; Kassi N'dja J; N'Guessan AE; Poorter L; Qie L; Rutishauser E; Sist P; Sonké B; Sullivan MJP; Vilanova E; Wang MMH; Martius C; Herold M
    Glob Chang Biol; 2019 Nov; 25(11):3609-3624. PubMed ID: 31310673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating urban above ground biomass with multi-scale LiDAR.
    Wilkes P; Disney M; Vicari MB; Calders K; Burt A
    Carbon Balance Manag; 2018 Jun; 13(1):10. PubMed ID: 29943069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite detection of land-use change and effects on regional forest aboveground biomass estimates.
    Zheng D; Heath LS; Ducey MJ
    Environ Monit Assess; 2008 Sep; 144(1-3):67-79. PubMed ID: 17882519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forest degradation and biomass loss along the Chocó region of Colombia.
    Meyer V; Saatchi S; Ferraz A; Xu L; Duque A; García M; Chave J
    Carbon Balance Manag; 2019 Mar; 14(1):2. PubMed ID: 30904964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature.
    Álvarez-Dávila E; Cayuela L; González-Caro S; Aldana AM; Stevenson PR; Phillips O; Cogollo Á; Peñuela MC; von Hildebrand P; Jiménez E; Melo O; Londoño-Vega AC; Mendoza I; Velásquez O; Fernández F; Serna M; Velázquez-Rua C; Benítez D; Rey-Benayas JM
    PLoS One; 2017; 12(3):e0171072. PubMed ID: 28301482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated pan-tropical biomass map using multiple reference datasets.
    Avitabile V; Herold M; Heuvelink GB; Lewis SL; Phillips OL; Asner GP; Armston J; Ashton PS; Banin L; Bayol N; Berry NJ; Boeckx P; de Jong BH; DeVries B; Girardin CA; Kearsley E; Lindsell JA; Lopez-Gonzalez G; Lucas R; Malhi Y; Morel A; Mitchard ET; Nagy L; Qie L; Quinones MJ; Ryan CM; Ferry SJ; Sunderland T; Laurin GV; Gatti RC; Valentini R; Verbeeck H; Wijaya A; Willcock S
    Glob Chang Biol; 2016 Apr; 22(4):1406-20. PubMed ID: 26499288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations.
    Forkel M; Drüke M; Thurner M; Dorigo W; Schaphoff S; Thonicke K; von Bloh W; Carvalhais N
    Sci Rep; 2019 Dec; 9(1):18757. PubMed ID: 31822728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.
    Guitet S; Hérault B; Molto Q; Brunaux O; Couteron P
    PLoS One; 2015; 10(9):e0138456. PubMed ID: 26402522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining remote sensing imagery and forest age inventory for biomass mapping.
    Zheng G; Chen JM; Tian QJ; Ju WM; Xia XQ
    J Environ Manage; 2007 Nov; 85(3):616-23. PubMed ID: 17134821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing biomass estimates of savanna woodland at different spatial scales in the Brazilian Cerrado: Re-evaluating allometric equations and environmental influences.
    Roitman I; Bustamante MMC; Haidar RF; Shimbo JZ; Abdala GC; Eiten G; Fagg CW; Felfili MC; Felfili JM; Jacobson TKB; Lindoso GS; Keller M; Lenza E; Miranda SC; Pinto JRR; Rodrigues AA; Delitti WBC; Roitman P; Sampaio JM
    PLoS One; 2018; 13(8):e0196742. PubMed ID: 30067735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of large-diameter trees in the wet tropical rainforests of Australia.
    Bradford M; Murphy HT
    PLoS One; 2019; 14(5):e0208377. PubMed ID: 31042705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests.
    Thurner M; Beer C; Ciais P; Friend AD; Ito A; Kleidon A; Lomas MR; Quegan S; Rademacher TT; Schaphoff S; Tum M; Wiltshire A; Carvalhais N
    Glob Chang Biol; 2017 Aug; 23(8):3076-3091. PubMed ID: 28192628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.