These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 32427411)
1. Aqueous Calcium-Ion Battery Based on a Mesoporous Organic Anode and a Manganite Cathode with Long Cycling Performance. Cang R; Zhao C; Ye K; Yin J; Zhu K; Yan J; Wang G; Cao D ChemSusChem; 2020 Aug; 13(15):3911-3918. PubMed ID: 32427411 [TBL] [Abstract][Full Text] [Related]
2. Concentrated Electrolyte for High-Performance Ca-Ion Battery Based on Organic Anode and Graphite Cathode. Li J; Han C; Ou X; Tang Y Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202116668. PubMed ID: 34994498 [TBL] [Abstract][Full Text] [Related]
3. Aromatic Organic Small-Molecule Material with (020) Crystal Plane Activation for Wide-Temperature and 68000 Cycle Aqueous Calcium-Ion Batteries. Qiao F; Wang J; Yu R; Huang M; Zhang L; Yang W; Wang H; Wu J; Zhang L; Jiang Y; An Q ACS Nano; 2023 Nov; 17(22):23046-23056. PubMed ID: 37934487 [TBL] [Abstract][Full Text] [Related]
4. Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells. Adil M; Ghosh A; Mitra S ACS Appl Mater Interfaces; 2022 Jun; 14(22):25501-25515. PubMed ID: 35637172 [TBL] [Abstract][Full Text] [Related]
5. Na Superionic Conductor-Type TiNb(PO Zhang J; Chen L; Niu L; Jiang P; Shao G; Liu Z ACS Appl Mater Interfaces; 2019 Oct; 11(43):39757-39764. PubMed ID: 31584258 [TBL] [Abstract][Full Text] [Related]
6. High-Energy Aqueous Magnesium Ion Batteries with Capacity-Compensation Evolved from Dynamic Copper Ion Redox. Zhang S; Wang Y; Sun Y; Wang Y; Yang Y; Zhang P; Lv X; Wang J; Zhu H; NuLi Y Small; 2023 May; 19(21):e2300148. PubMed ID: 36840668 [TBL] [Abstract][Full Text] [Related]
7. A Novel Calcium-Ion Battery Based on Dual-Carbon Configuration with High Working Voltage and Long Cycling Life. Wu S; Zhang F; Tang Y Adv Sci (Weinh); 2018 Aug; 5(8):1701082. PubMed ID: 30128228 [TBL] [Abstract][Full Text] [Related]
8. A New CuO-Fe Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional Porous Organic Polymer Anode with Desired Redox Potential and Capacity for High-Performance Aqueous Sodium-Ion and Ammonium-Ion Batteries. Zhang Y; Yao Q; Sun Y; Zhao Y; Niu Y ACS Appl Mater Interfaces; 2024 Oct; 16(40):53688-53696. PubMed ID: 39327808 [TBL] [Abstract][Full Text] [Related]
10. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries. Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Aqueous/Nonaqueous Water-in-Bisalt Electrolyte Enables Safe Dual Ion Batteries. Zhu J; Xu Y; Fu Y; Xiao D; Li Y; Liu L; Wang Y; Zhang Q; Li J; Yan X Small; 2020 Apr; 16(17):e1905838. PubMed ID: 32227436 [TBL] [Abstract][Full Text] [Related]
12. An Aqueous Ca-Ion Battery. Gheytani S; Liang Y; Wu F; Jing Y; Dong H; Rao KK; Chi X; Fang F; Yao Y Adv Sci (Weinh); 2017 Dec; 4(12):1700465. PubMed ID: 29270352 [TBL] [Abstract][Full Text] [Related]
13. TiP Wen Y; Chen L; Pang Y; Guo Z; Bin D; Wang YG; Wang C; Xia Y ACS Appl Mater Interfaces; 2017 Mar; 9(9):8075-8082. PubMed ID: 28212003 [TBL] [Abstract][Full Text] [Related]
14. Layered Na Zuo C; Shao Y; Li M; Zhang W; Zhu D; Tang W; Hu J; Liu P; Xiong F; An Q ACS Appl Mater Interfaces; 2024 Jul; 16(26):33733-33739. PubMed ID: 38915250 [TBL] [Abstract][Full Text] [Related]
15. Design of Organic Cathode Material Based on Quinone and Pyrazine Motifs for Rechargeable Lithium and Zinc Batteries. Menart S; Lužanin O; Pirnat K; Pahovnik D; Moškon J; Dominko R ACS Appl Mater Interfaces; 2024 Apr; 16(13):16029-16039. PubMed ID: 38511931 [TBL] [Abstract][Full Text] [Related]
16. Benzoquinone-Lubricated Intercalation in Manganese Oxide for High-Capacity and High-Rate Aqueous Aluminum-Ion Battery. Meng H; Ran Q; Zhu MH; Zhao QZ; Han GF; Wang TH; Wen Z; Lang XY; Jiang Q Small; 2024 Jun; 20(26):e2310722. PubMed ID: 38229525 [TBL] [Abstract][Full Text] [Related]
18. A universal strategy towards high-energy aqueous multivalent-ion batteries. Tang X; Zhou D; Zhang B; Wang S; Li P; Liu H; Guo X; Jaumaux P; Gao X; Fu Y; Wang C; Wang C; Wang G Nat Commun; 2021 May; 12(1):2857. PubMed ID: 34001901 [TBL] [Abstract][Full Text] [Related]
19. A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries. Wang H; Wu Q; Wang Y; Lv X; Wang HG J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1024-1030. PubMed ID: 34487925 [TBL] [Abstract][Full Text] [Related]
20. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Luo JY; Cui WJ; He P; Xia YY Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]