BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32427454)

  • 1. High Thermoelectric Power Factor Realization in Si-Rich SiGe/Si Superlattices by Super-Controlled Interfaces.
    Taniguchi T; Ishibe T; Naruse N; Mera Y; Alam MM; Sawano K; Nakamura Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25428-25434. PubMed ID: 32427454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon transport in the nano-system of Si and SiGe films with Ge nanodots and approach to ultralow thermal conductivity.
    Taniguchi T; Terada T; Komatsubara Y; Ishibe T; Konoike K; Sanada A; Naruse N; Mera Y; Nakamura Y
    Nanoscale; 2021 Mar; 13(9):4971-4977. PubMed ID: 33629704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low thermal conductivity and improved thermoelectric performance of nanocrystalline silicon germanium films by sputtering.
    Taborda JA; Romero JJ; Abad B; Muñoz-Rojo M; Mello A; Briones F; Gonzalez MS
    Nanotechnology; 2016 Apr; 27(17):175401. PubMed ID: 26967792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Probing of Cross-Plane Thermal Properties of Atomic Layer Deposition Al
    Park NW; Lee WY; Yoon YS; Ahn JY; Lee JH; Kim GS; Kim TG; Choi CJ; Park JS; Saitoh E; Lee SK
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44472-44482. PubMed ID: 30507128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Responsiveness of Thermoelectric Gas Sensors with Boron-Doped and Thermally Annealed SiGe Thin Films via Low-Pressure Chemical Vapor Deposition.
    Shin W; Nishibori M; Itoh T; Izu N; Matsubara I
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials.
    Yamasaka S; Nakamura Y; Ueda T; Takeuchi S; Sakai A
    Sci Rep; 2015 Oct; 5():14490. PubMed ID: 26434678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of phonon transport by the formation of the Al
    Park NW; Ahn JY; Park TH; Lee JH; Lee WY; Cho K; Yoon YG; Choi CJ; Park JS; Lee SK
    Nanoscale; 2017 Jun; 9(21):7027-7036. PubMed ID: 28368061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Seebeck effect in Ge/Si through the combination of interfacial design features.
    Nadtochiy A; Kuryliuk V; Strelchuk V; Korotchenkov O; Li PW; Lee SW
    Sci Rep; 2019 Nov; 9(1):16335. PubMed ID: 31704954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric transport in strained Si and Si/Ge heterostructures.
    Hinsche NF; Mertig I; Zahn P
    J Phys Condens Matter; 2012 Jul; 24(27):275501. PubMed ID: 22713229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the Coherent Phonon Transport in SiGe Nanowires with Dense Si/Ge Interfaces.
    Cheng Y; Xiong S; Zhang T
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance P- and N-Type SiGe/Si Strained Super-Lattice FinFET and CMOS Inverter: Comparison of Si and SiGe FinFET.
    Yao YJ; Yang CR; Tseng TY; Chang HJ; Lin TJ; Luo GL; Hou FJ; Wu YC; Chang-Liao KS
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting Thermoelectric Performance in Epitaxial GeTe Film/Si by Domain Engineering and Point Defect Control.
    Ishibe T; Komatsubara Y; Ishikawa K; Takigawa S; Naruse N; Mera Y; Yamashita Y; Ohishi Y; Nakamura Y
    ACS Appl Mater Interfaces; 2023 May; 15(21):26104-26110. PubMed ID: 37191696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface.
    Ishibe T; Tomeda A; Watanabe K; Kamakura Y; Mori N; Naruse N; Mera Y; Yamashita Y; Nakamura Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37709-37716. PubMed ID: 30346133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Diffusion Mechanism of Ge During Oxidation of Si/SiGe Nanofins.
    Thornton CS; Tuttle B; Turner E; Law ME; Pantelides ST; Wang GT; Jones KS
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29422-29430. PubMed ID: 35706336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of interface angle on the thermal conductivity of Si/Ge superlattices.
    Liu YG; Ren GL; Chernatynskiy A; Zhao XF
    Phys Chem Chem Phys; 2021 Oct; 23(40):23225-23232. PubMed ID: 34623359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.
    Nakamura Y
    Sci Technol Adv Mater; 2018; 19(1):31-43. PubMed ID: 29371907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials.
    Yamasaka S; Watanabe K; Sakane S; Takeuchi S; Sakai A; Sawano K; Nakamura Y
    Sci Rep; 2016 Mar; 6():22838. PubMed ID: 26973092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode confinement, interface mass-smudging, and sample length effects on phonon transport in thin nanocomposite superlattices.
    Srivastava GP; Thomas IO
    J Phys Condens Matter; 2019 Feb; 31(5):055303. PubMed ID: 30523937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Out-of-Plane Thermoelectric Figure of Merit
    Park NW; Lee WY; Yoon YS; Kim GS; Yoon YG; Lee SK
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38247-38254. PubMed ID: 31542917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.