These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32427460)

  • 1. Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol.
    Barona M; Snurr RQ
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28217-28231. PubMed ID: 32427460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab Initio Study of the Adsorption of Small Molecules on Metal-Organic Frameworks with Oxo-centered Trimetallic Building Units: The Role of the Undercoordinated Metal Ion.
    Mavrandonakis A; Vogiatzis KD; Boese AD; Fink K; Heine T; Klopper W
    Inorg Chem; 2015 Sep; 54(17):8251-63. PubMed ID: 26252363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Discovery of Stable Metal-Organic Frameworks for Methane-to-Methanol Catalysis.
    Adamji H; Nandy A; Kevlishvili I; Román-Leshkov Y; Kulik HJ
    J Am Chem Soc; 2023 Jul; 145(26):14365-14378. PubMed ID: 37339429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust MOFs of "tsg" Topology Based on Trigonal Prismatic Organic and Metal Cluster SBUs: Single Crystal to Single Crystal Postsynthetic Metal Exchange and Selective CO
    Chandrasekhar P; Savitha G; Moorthy JN
    Chemistry; 2017 May; 23(30):7297-7305. PubMed ID: 28370421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinatively Unsaturated Metal-Organic Frameworks M
    Ketrat S; Maihom T; Wannakao S; Probst M; Nokbin S; Limtrakul J
    Inorg Chem; 2017 Nov; 56(22):14005-14012. PubMed ID: 29083883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic potential-derived charge: a universal OER performance descriptor for MOFs.
    Xue X; Gao H; Liu J; Yang M; Feng S; Liu Z; Lin J; Kasemchainan J; Wang L; Jia Q; Wang G
    Chem Sci; 2022 Nov; 13(44):13160-13171. PubMed ID: 36425504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Temperature, Ambient Pressure Oxidation of Methane to Methanol Over Every Tri-Iron Node in a Metal-Organic Framework Material.
    Hall JN; Bollini P
    Chemistry; 2020 Dec; 26(70):16639-16643. PubMed ID: 32915462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Framework (MOF)-Based Materials as Heterogeneous Catalysts for C-H Bond Activation.
    Liu M; Wu J; Hou H
    Chemistry; 2019 Feb; 25(12):2935-2948. PubMed ID: 30264533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating the Energetics of C-H Bond Activation in Methane by Utilizing Metalated Porphyrinic Metal-Organic Frameworks.
    Ganai A; Ball B; Sarkar P
    J Phys Chem Lett; 2023 Feb; 14(7):1832-1839. PubMed ID: 36779674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dialing in Catalytic Sites on Metal Organic Framework Nodes: MIL-53(Al) and MIL-68(Al) Probed with Methanol Dehydration Catalysis.
    Wang Z; Babucci M; Zhang Y; Wen Y; Peng L; Yang B; Gates BC; Yang D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53537-53546. PubMed ID: 33180462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis.
    Li FL; Shao Q; Huang X; Lang JP
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1888-1892. PubMed ID: 29155461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Predefined M
    Peng L; Asgari M; Mieville P; Schouwink P; Bulut S; Sun DT; Zhou Z; Pattison P; van Beek W; Queen WL
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23957-23966. PubMed ID: 28650146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening for high-spin metal organic frameworks (MOFs): density functional theory study on DUT-8(M1,M2) (with Mi = V,…,Cu).
    Schwalbe S; Trepte K; Seifert G; Kortus J
    Phys Chem Chem Phys; 2016 Mar; 18(11):8075-80. PubMed ID: 26922864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Frameworks M-MOF-74 and M-MIL-100: Comparison of Textural, Acidic, and Catalytic Properties.
    Palomino Cabello C; Gómez-Pozuelo G; Opanasenko M; Nachtigall P; Čejka J
    Chempluschem; 2016 Aug; 81(8):828-835. PubMed ID: 31968824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ti(3+)-, V(2+/3+)-, Cr(2+/3+)-, Mn(2+)-, and Fe(2+)-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5.
    Brozek CK; Dincă M
    J Am Chem Soc; 2013 Aug; 135(34):12886-91. PubMed ID: 23902330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations.
    Yu X; Zhong L; Li S
    Phys Chem Chem Phys; 2021 Mar; 23(8):4963-4974. PubMed ID: 33621299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying promising metal-organic frameworks for heterogeneous catalysis via high-throughput periodic density functional theory.
    Rosen AS; Notestein JM; Snurr RQ
    J Comput Chem; 2019 May; 40(12):1305-1318. PubMed ID: 30715733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, characterization, and hydrogen storage capacity of MIL-53 metal-organic frameworks.
    Lin KS; Adhikari AK; Tu MT; Wang CH; Chiang CL
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2549-56. PubMed ID: 23763128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction.
    Ghaleno MR; Ghaffari-Moghaddam M; Khajeh M; Reza Oveisi A; Bohlooli M
    J Colloid Interface Sci; 2019 Feb; 535():214-226. PubMed ID: 30293047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.