These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32427460)
61. Electronic structure and reactivity of Fe(iv)oxo species in metal-organic frameworks. Saiz F; Bernasconi L Phys Chem Chem Phys; 2019 Feb; 21(9):4965-4974. PubMed ID: 30758369 [TBL] [Abstract][Full Text] [Related]
62. Superior Activity of Isomorphously Substituted MOFs with MIL-100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. Gómez-Pozuelo G; Cabello CP; Opanasenko M; Horáček M; Čejka J Chempluschem; 2017 Jan; 82(1):152-159. PubMed ID: 31961502 [TBL] [Abstract][Full Text] [Related]
64. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related]
65. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters. De La Cruz C; Sheppard N Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107 [TBL] [Abstract][Full Text] [Related]
67. Modification of the catalytic properties of the Au4 nanocluster for the conversion of methane-to-methanol: synergistic effects of metallic adatoms and a defective graphene support. Sirijaraensre J; Limtrakul J Phys Chem Chem Phys; 2015 Apr; 17(15):9706-15. PubMed ID: 25772613 [TBL] [Abstract][Full Text] [Related]
68. Mixed-Metal Strategy on Metal-Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. Sun D; Sun F; Deng X; Li Z Inorg Chem; 2015 Sep; 54(17):8639-43. PubMed ID: 26288128 [TBL] [Abstract][Full Text] [Related]
69. Tuning Catalytic Sites on Zr Yang D; Gaggioli CA; Ray D; Babucci M; Gagliardi L; Gates BC J Am Chem Soc; 2020 Apr; 142(17):8044-8056. PubMed ID: 32249577 [TBL] [Abstract][Full Text] [Related]
70. Three novel topologically different metal-organic frameworks built from 3-nitro-4-(pyridin-4-yl)benzoic acid. Qin T; Zhang S; Wang Y; Hou T; Zhu D; Jing S Acta Crystallogr C Struct Chem; 2019 Feb; 75(Pt 2):150-160. PubMed ID: 30720453 [TBL] [Abstract][Full Text] [Related]
71. Unravelling the Redox-catalytic Behavior of Ce Smolders S; Lomachenko KA; Bueken B; Struyf A; Bugaev AL; Atzori C; Stock N; Lamberti C; Roeffaers MBJ; De Vos DE Chemphyschem; 2018 Feb; 19(4):373-378. PubMed ID: 29027736 [TBL] [Abstract][Full Text] [Related]
72. High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. Wu H; Zhou W; Yildirim T J Am Chem Soc; 2009 Apr; 131(13):4995-5000. PubMed ID: 19275154 [TBL] [Abstract][Full Text] [Related]
73. Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: Efficiency and mechanism. Yu D; Wu M; Hu Q; Wang L; Lv C; Zhang L J Hazard Mater; 2019 Apr; 367():456-464. PubMed ID: 30611038 [TBL] [Abstract][Full Text] [Related]
74. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. Wang H; Yuan X; Wu Y; Zeng G; Chen X; Leng L; Wu Z; Jiang L; Li H J Hazard Mater; 2015 Apr; 286():187-94. PubMed ID: 25585267 [TBL] [Abstract][Full Text] [Related]
75. Heterometallic Titanium-Organic Frameworks by Metal-Induced Dynamic Topological Transformations. Padial NM; Lerma-Berlanga B; Almora-Barrios N; Castells-Gil J; da Silva I; de la Mata MA; Molina SI; Hernández-Saz J; Platero-Prats AE; Tatay S; Martı-Gastaldo C J Am Chem Soc; 2020 Apr; 142(14):6638-6648. PubMed ID: 32172557 [TBL] [Abstract][Full Text] [Related]
76. Metal-Organic Frameworks (MOFs) of a Cubic Metal Cluster with Multicentered Mn(I)-Mn(I) Bonds. Hu HC; Hu HS; Zhao B; Cui P; Cheng P; Li J Angew Chem Int Ed Engl; 2015 Sep; 54(40):11681-5. PubMed ID: 26265186 [TBL] [Abstract][Full Text] [Related]
77. Systematic Engineering of Single Substitution in Zirconium Metal-Organic Frameworks toward High-Performance Catalysis. Huang N; Yuan S; Drake H; Yang X; Pang J; Qin J; Li J; Zhang Y; Wang Q; Jiang D; Zhou HC J Am Chem Soc; 2017 Dec; 139(51):18590-18597. PubMed ID: 29172485 [TBL] [Abstract][Full Text] [Related]
78. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Neurock M; Janik M; Wieckowski A Faraday Discuss; 2008; 140():363-78; discussion 417-37. PubMed ID: 19213327 [TBL] [Abstract][Full Text] [Related]
79. Optimizing Open Iron Sites in Metal-Organic Frameworks for Ethane Oxidation: A First-Principles Study. Liao P; Getman RB; Snurr RQ ACS Appl Mater Interfaces; 2017 Oct; 9(39):33484-33492. PubMed ID: 28394564 [TBL] [Abstract][Full Text] [Related]
80. Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks. Yuan S; Chen YP; Qin J; Lu W; Wang X; Zhang Q; Bosch M; Liu TF; Lian X; Zhou HC Angew Chem Int Ed Engl; 2015 Dec; 54(49):14696-700. PubMed ID: 26494126 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]