These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32427472)

  • 21. Photoredox Catalysis for the Generation of Carbon Centered Radicals.
    Goddard JP; Ollivier C; Fensterbank L
    Acc Chem Res; 2016 Sep; 49(9):1924-36. PubMed ID: 27529633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino Acid Sulfinate Salts as Alkyl Radical Precursors.
    Hammond JM; Gardiner MG; Malins LR
    Org Lett; 2023 May; 25(17):3157-3162. PubMed ID: 37093619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoredox-catalyzed synthesis of sulfones through deaminative insertion of sulfur dioxide.
    Wang X; Kuang Y; Ye S; Wu J
    Chem Commun (Camb); 2019 Dec; 55(99):14962-14964. PubMed ID: 31774418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of aryl sulfides via radical-radical cross coupling of electron-rich arenes using visible light photoredox catalysis.
    Das A; Maity M; Malcherek S; König B; Rehbein J
    Beilstein J Org Chem; 2018; 14():2520-2528. PubMed ID: 30344775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silyl Radical Activation of Alkyl Halides in Metallaphotoredox Catalysis: A Unique Pathway for Cross-Electrophile Coupling.
    Zhang P; Le CC; MacMillan DW
    J Am Chem Soc; 2016 Jul; 138(26):8084-7. PubMed ID: 27263662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How are radicals (re)generated in photochemical ATRP?
    Ribelli TG; Konkolewicz D; Bernhard S; Matyjaszewski K
    J Am Chem Soc; 2014 Sep; 136(38):13303-12. PubMed ID: 25178119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rhodium-catalyzed disulfide exchange reaction.
    Arisawa M; Yamaguchi M
    J Am Chem Soc; 2003 Jun; 125(22):6624-5. PubMed ID: 12769559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic and preparative studies of radical chain homolytic substitution reactions of N-heterocyclic carbene boranes and disulfides.
    Pan X; Vallet AL; Schweizer S; Dahbi K; Delpech B; Blanchard N; Graff B; Geib SJ; Curran DP; Lalevée J; Lacôte E
    J Am Chem Soc; 2013 Jul; 135(28):10484-91. PubMed ID: 23718209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin.
    Goldman R; Stoyanovsky DA; Day BW; Kagan VE
    Biochemistry; 1995 Apr; 34(14):4765-72. PubMed ID: 7718583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lanthanide Photocatalysis.
    Qiao Y; Schelter EJ
    Acc Chem Res; 2018 Nov; 51(11):2926-2936. PubMed ID: 30335356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dipotassium 1,3,4-thiadiazole-2,5-bis(thiolate) as a new S-donor for direct synthesis of symmetrical disulfides.
    Soleiman-Beigi M; Alikarami M; Kohzadi H; Akbari Z
    Sci Rep; 2022 Sep; 12(1):16149. PubMed ID: 36167798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thioetherification via Photoredox/Nickel Dual Catalysis.
    Jouffroy M; Kelly CB; Molander GA
    Org Lett; 2016 Feb; 18(4):876-9. PubMed ID: 26852821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoredox Cyanomethylation of Indoles: Catalyst Modification and Mechanism.
    O'Brien CJ; Droege DG; Jiu AY; Gandhi SS; Paras NA; Olson SH; Conrad J
    J Org Chem; 2018 Aug; 83(16):8926-8935. PubMed ID: 29940725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly selective double chalcogenation of isocyanides with disulfide-diselenide mixed systems.
    Tsuchii K; Tsuboi Y; Kawaguchi S; Takahashi J; Sonoda N; Nomoto A; Ogawa A
    J Org Chem; 2007 Jan; 72(2):415-23. PubMed ID: 17221956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cooperative NHC and Photoredox Catalysis for the Synthesis of β-Trifluoromethylated Alkyl Aryl Ketones.
    Meng QY; Döben N; Studer A
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):19956-19960. PubMed ID: 32700458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reaction of hydroxyl radicals with alkyl phosphates and the oxidation of phosphatoalkyl radicals by nitro compounds.
    Schuchmann MN; Scholes ML; Zegota H; Von Sonntag C
    Int J Radiat Biol; 1995 Aug; 68(2):121-31. PubMed ID: 7658137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New Radical Borylation Pathways for Organoboron Synthesis Enabled by Photoredox Catalysis.
    Qi J; Zhang FL; Jin JK; Zhao Q; Li B; Liu LX; Wang YF
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12876-12884. PubMed ID: 32232933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acyl Radical Chemistry via Visible-Light Photoredox Catalysis.
    Banerjee A; Lei Z; Ngai MY
    Synthesis (Stuttg); 2019 Jan; 51(2):303-333. PubMed ID: 31057188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intramolecular 1,5-H transfer reaction of aryl iodides through visible-light photoredox catalysis: a concise method for the synthesis of natural product scaffolds.
    Chen JQ; Wei YL; Xu GQ; Liang YM; Xu PF
    Chem Commun (Camb); 2016 May; 52(38):6455-8. PubMed ID: 27100267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Triethylborane-initiated room temperature radical addition of hypophosphites to olefins: synthesis of monosubstituted phosphinic acids and esters.
    Deprèle S; Montchamp JL
    J Org Chem; 2001 Oct; 66(20):6745-55. PubMed ID: 11578230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.