These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 32427853)
1. Apparent Contact Angle around the Periphery of a Liquid Drop on Roughened Surfaces. Huang X; Gates I Sci Rep; 2020 May; 10(1):8220. PubMed ID: 32427853 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface. Promraksa A; Chuang YC; Chen LJ J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812 [TBL] [Abstract][Full Text] [Related]
5. Effects of geometrical characteristics of surface roughness on droplet wetting. Sheng YJ; Jiang S; Tsao HK J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406 [TBL] [Abstract][Full Text] [Related]
6. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity. Porcheron F; Monson PA Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079 [TBL] [Abstract][Full Text] [Related]
7. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
8. Effect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet. Singh RK; Hodgson PD; Sen N; Das S Langmuir; 2021 Mar; 37(10):3038-3048. PubMed ID: 33651946 [TBL] [Abstract][Full Text] [Related]
9. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related]
10. Estimation of the Structure of Hydrophobic Surfaces Using the Cassie-Baxter Equation. Myronyuk O; Vanagas E; Rodin AM; Wesolowski M Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274712 [TBL] [Abstract][Full Text] [Related]
11. Droplet state and mechanism of contact line movement on laser-textured aluminum alloy surfaces. Kuznetsov GV; Feoktistov DV; Orlova EG; Zykov IY; Islamova AG J Colloid Interface Sci; 2019 Oct; 553():557-566. PubMed ID: 31238226 [TBL] [Abstract][Full Text] [Related]
12. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
13. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting. McHale G; Orme BV; Wells GG; Ledesma-Aguilar R Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342 [TBL] [Abstract][Full Text] [Related]
14. Wetting on Micropatterned Surfaces: Partial Penetration in the Cassie State and Wenzel Deviation Theoretically Explained. Rohrs C; Azimi A; He P Langmuir; 2019 Nov; 35(47):15421-15430. PubMed ID: 31663751 [TBL] [Abstract][Full Text] [Related]
15. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces. Zhao L; Cheng J Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459 [TBL] [Abstract][Full Text] [Related]
16. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Koishi T; Yasuoka K; Fujikawa S; Ebisuzaki T; Zeng XC Proc Natl Acad Sci U S A; 2009 May; 106(21):8435-40. PubMed ID: 19429707 [TBL] [Abstract][Full Text] [Related]
17. Nanodrop on a nanorough solid surface: density functional theory considerations. Berim GO; Ruckenstein E J Chem Phys; 2008 Jul; 129(1):014708. PubMed ID: 18624497 [TBL] [Abstract][Full Text] [Related]
18. Two-fluid wetting behavior of a hydrophobic silicon nanowire array. Kim Y; Chung Y; Tian Y; Carraro C; Maboudian R Langmuir; 2014 Nov; 30(44):13330-7. PubMed ID: 25356959 [TBL] [Abstract][Full Text] [Related]