BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32427927)

  • 1. Thymic resident NKT cell subsets show differential requirements for CD28 co-stimulation during antigenic activation.
    Shissler SC; Singh NJ; Webb TJ
    Sci Rep; 2020 May; 10(1):8218. PubMed ID: 32427927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innate NKTγδ and NKTαβ cells exert similar functions and compete for a thymic niche.
    Pereira P; Boucontet L
    Eur J Immunol; 2012 May; 42(5):1272-81. PubMed ID: 22539299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of NKT cell differentiation by tissue-specific microenvironments.
    Yang Y; Ueno A; Bao M; Wang Z; Im JS; Porcelli S; Yoon JW
    J Immunol; 2003 Dec; 171(11):5913-20. PubMed ID: 14634102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. γδ T cells acquire effector fates in the thymus and differentiate into cytokine-producing effectors in a Listeria model of infection independently of CD28 costimulation.
    Laird RM; Wolf BJ; Princiotta MF; Hayes SM
    PLoS One; 2013; 8(5):e63178. PubMed ID: 23671671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of thymic NKT cell development by the B7-CD28 costimulatory pathway.
    Williams JA; Lumsden JM; Yu X; Feigenbaum L; Zhang J; Steinberg SM; Hodes RJ
    J Immunol; 2008 Jul; 181(2):907-17. PubMed ID: 18606642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-181a/b-1 Is Not Required for Innate γδ NKT Effector Cell Development.
    Sandrock I; Ziętara N; Łyszkiewicz M; Oberdörfer L; Witzlau K; Krueger A; Prinz I
    PLoS One; 2015; 10(12):e0145010. PubMed ID: 26673421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD28 controls the development of innate-like CD8+ T cells by promoting the functional maturation of NKT cells.
    Yousefi M; Duplay P
    Eur J Immunol; 2013 Nov; 43(11):3017-27. PubMed ID: 23896981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical role for the chemokine receptor CXCR6 in homeostasis and activation of CD1d-restricted NKT cells.
    Germanov E; Veinotte L; Cullen R; Chamberlain E; Butcher EC; Johnston B
    J Immunol; 2008 Jul; 181(1):81-91. PubMed ID: 18566372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Thymic Development of Natural Killer T Cell Subsets by Multiparameter Flow Cytometry.
    Tuttle KD; Gapin L
    Methods Mol Biol; 2018; 1799():121-133. PubMed ID: 29956149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways.
    Hayakawa Y; Takeda K; Yagita H; Van Kaer L; Saiki I; Okumura K
    J Immunol; 2001 May; 166(10):6012-8. PubMed ID: 11342617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining a novel subset of CD1d-dependent type II natural killer T cells using natural killer cell-associated markers.
    Singh AK; Rhost S; Löfbom L; Cardell SL
    Scand J Immunol; 2019 Sep; 90(3):e12794. PubMed ID: 31141185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural killer T-cell populations in C57BL/6 and NK1.1 congenic BALB.NK mice-a novel thymic subset defined in BALB.NK mice.
    Stenström M; Sköld M; Andersson A; Cardell SL
    Immunology; 2005 Mar; 114(3):336-45. PubMed ID: 15720435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation.
    Michel ML; Mendes-da-Cruz D; Keller AC; Lochner M; Schneider E; Dy M; Eberl G; Leite-de-Moraes MC
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19845-50. PubMed ID: 19057011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion and CD2/CD3/CD28 stimulation enhance Th2 cytokine secretion of human invariant NKT cells with retained anti-tumor cytotoxicity.
    Andrews K; Hamers AAJ; Sun X; Neale G; Verbist K; Tedrick P; Nichols KE; Pereira S; Geraghty DE; Pillai AB
    Cytotherapy; 2020 May; 22(5):276-290. PubMed ID: 32238299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of NKT cell development by B7-CD28 interaction: an expanding horizon for costimulation.
    Zheng X; Zhang H; Yin L; Wang CR; Liu Y; Zheng P
    PLoS One; 2008 Jul; 3(7):e2703. PubMed ID: 18628995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of the NKT cell subsets with superantigen SEB-activated tolerance].
    Chen Y; Zhong J; Xu J; Chen ZC; Guo YL; Jin T; Zhang JH
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2008 Oct; 24(10):943-6. PubMed ID: 18845074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natural killer T (NKT) cell developmental pathway iInvolving a thymus-dependent NK1.1(-)CD4(+) CD1d-dependent precursor stage.
    Pellicci DG; Hammond KJ; Uldrich AP; Baxter AG; Smyth MJ; Godfrey DI
    J Exp Med; 2002 Apr; 195(7):835-44. PubMed ID: 11927628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential dependence on nuclear factor-κB-inducing kinase among natural killer T-cell subsets in their development.
    Noma H; Eshima K; Satoh M; Iwabuchi K
    Immunology; 2015 Sep; 146(1):89-99. PubMed ID: 25988531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PD-1/PDL1 and CD28/CD80 pathways modulate natural killer T cell function to inhibit hepatitis B virus replication.
    Wang XF; Lei Y; Chen M; Chen CB; Ren H; Shi TD
    J Viral Hepat; 2013 Apr; 20 Suppl 1():27-39. PubMed ID: 23458522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pak2 Controls Acquisition of NKT Cell Fate by Regulating Expression of the Transcription Factors PLZF and Egr2.
    O'Hagan KL; Zhao J; Pryshchep O; Wang CR; Phee H
    J Immunol; 2015 Dec; 195(11):5272-84. PubMed ID: 26519537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.