BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32428395)

  • 1. Electrochemical Screening of Metallic Oxygen Reduction Reaction Catalyst Thin Films Using Getter Cosputtering.
    Van Wassen AR; Murphy MJ; Molina Villarino A; Gannett CN; van Dover RB; Abruña HD
    ACS Comb Sci; 2020 Jul; 22(7):339-347. PubMed ID: 32428395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-co (M: Pd, Ag, Au).
    Fernández JL; Walsh DA; Bard AJ
    J Am Chem Soc; 2005 Jan; 127(1):357-65. PubMed ID: 15631486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical high-throughput screening for activity and electrochemical stability of oxygen reducing electrode catalysts for fuel cell applications.
    Dogan C; Stöwe K; Maier WF
    ACS Comb Sci; 2015 Mar; 17(3):164-75. PubMed ID: 25555048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial Studies of Palladium-Based Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells.
    Yang Y; Chen G; Zeng R; Villarino AM; DiSalvo FJ; van Dover RB; Abruña HD
    J Am Chem Soc; 2020 Feb; 142(8):3980-3988. PubMed ID: 32027499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media.
    Singh B; Murad L; Laffir F; Dickinson C; Dempsey E
    Nanoscale; 2011 Aug; 3(8):3334-49. PubMed ID: 21717025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic studies of heat-treated FeNxCy/C involved in electrochemical oxygen reduction under acid media.
    Liu SH; Wu JR
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():313-20. PubMed ID: 25574650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method.
    Inaba M; Quinson J; Bucher JR; Arenz M
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29608166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media.
    Spendelow JS; Wieckowski A
    Phys Chem Chem Phys; 2007 Jun; 9(21):2654-75. PubMed ID: 17627310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Determination of Catalyst Loading on Glassy Carbon Disk and Its Impact on Thin Film Rotating Disk Electrode for Oxygen Reduction Reaction.
    Chourashiya M; Sharma R; Andersen SM
    Anal Chem; 2018 Dec; 90(24):14181-14187. PubMed ID: 30407795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial screening of highly active Pd binary catalysts for electrochemical oxygen reduction.
    Lee KR; Jung Y; Woo SI
    ACS Comb Sci; 2012 Jan; 14(1):10-6. PubMed ID: 22040057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Characterizations of Zinc Oxide on Reduced Graphene Oxide for High Performance Electrocatalytic Reduction of Oxygen.
    Yu J; Huang T; Jiang Z; Sun M; Tang C
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30563295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the Dynamic Nature of Fuel Cell Electrodes as a Function of Conditioning: An ex Situ Material Characterization and in Situ Electrochemical Diagnostic Study.
    Kabir S; Myers DJ; Kariuki N; Park J; Wang G; Baker A; Macauley N; Mukundan R; More KL; Neyerlin KC
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45016-45030. PubMed ID: 31692317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative Stability Matters: A Case Study of Palladium Hydride Nanosheets for Alkaline Fuel Cells.
    Li H; Zeng R; Feng X; Wang H; Xu W; Lu X; Xie Z; Abruña HD
    J Am Chem Soc; 2022 May; 144(18):8106-8114. PubMed ID: 35486896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction.
    Zheng Y; Jiao Y; Jaroniec M; Jin Y; Qiao SZ
    Small; 2012 Dec; 8(23):3550-66. PubMed ID: 22893586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions.
    Wei PJ; Yu GQ; Naruta Y; Liu JG
    Angew Chem Int Ed Engl; 2014 Jun; 53(26):6659-63. PubMed ID: 24842193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A methodology for investigating new nonprecious metal catalysts for PEM fuel cells.
    Susac D; Sode A; Zhu L; Wong PC; Teo M; Bizzotto D; Mitchell KA; Parsons RR; Campbell SA
    J Phys Chem B; 2006 Jun; 110(22):10762-70. PubMed ID: 16771324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel cobalt tetranitrophthalocyanine/graphene composite assembled by an in situ solvothermal synthesis method as a highly efficient electrocatalyst for the oxygen reduction reaction in alkaline medium.
    Lv G; Cui L; Wu Y; Liu Y; Pu T; He X
    Phys Chem Chem Phys; 2013 Aug; 15(31):13093-100. PubMed ID: 23820483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.